Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

(a) If ψaandψb are orthogonal, and both normalized, what is the constant A in Equation 5.10?

(b) Ifrole="math" localid="1658225858808" ψa=ψb (and it is normalized), what is A ? (This case, of course, occurs only for bosons.)

Short Answer

Expert verified

(a) The required constant A is 12.

(b) The ψa=ψb, A is 12.

Step by step solution

01

Definition of normalisation

In essence, normalizing the wave function entails figuring out the precise shape that guarantees the probability that the particle will be discovered somewhere in space is equal to 1 (i.e., it will be discovered somewhere); this typically entails solving for a constant while keeping in mind the restriction above that the probability is equal to 1.

02

Determine the normalization constant  A

(a)

Find the function's normalisation constant A.

For give equation-

ψ(r1,r2)=A[ψa(r1)ψb(r2)±ψb(r1)ψa(r2)]

It must be valid when it normalise the function:

1=ψ*ψd3r1d3r2=A2ψar1ψb,r2±ψb(r1)ψa(r2)*ψar1ψb,r2±ψb(r1)ψa(r2)d3r1d3r21A2=ψar12ψbr22d3r1d3r2±ψa*r1ψb,r1ψb*r2ψbr2d3r1d3r2±ψb*r1ψar1ψa*r2ψb,r2d3r1d3r2+ψar12ψbr22d3r1d3r2=1±0±0+11A2=2A=12

Hence the value of A is, 12.

03

Determination of the A

(b)

ifψa=ψbthen:

1=A22ψar1ψar2*2ψar1ψar2d3r1d3r2=4A2ψar12d3r1ψar22d3r2=4A2A=12

Hence the value of A is,12 .

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

Chlorine has two naturally occurring isotopes,CI35and CI37. Show that

the vibrational spectrum of HCIshould consist of closely spaced doublets,

with a splitting given by v=7.51×10-4v, where v is the frequency of the

emitted photon. Hint: Think of it as a harmonic oscillator, with ω=k/μ, where

μis the reduced mass (Equation 5.8 ) and k is presumably the same for both isotopes.

(a)Use Equation5.113 to determine the energy density in the wavelength rangedλ. Hint: setρ(ω)=ρ-(λ), and solve forρ(λ)-

(b)Derive the Wien displacement law for the wavelength at which the blackbody energy density is a maximum
λmax=2.90×10-3mKT

You'll need to solve the transcendental equation(5×x)=5e-x, using a calculator (or a computer); get the numerical answer accurate to three significant digits.

Suppose we use delta function wells, instead of spikes (i.e., switch the sign ofin Equation 5.57). Analyze this case, constructing the analog to Figure 5.6. this requires no new calculation, for the positive energy solutions (except that β is now negative; use β=-1.5 for the graph), but you do need to work out the negative energy solutions (letk-2mE/handZ-ka,forE<0) and , for). How many states are there in the first allowed band?

We can extend the theory of a free electron gas (Section 5.3.1) to the relativistic domain by replacing the classical kinetic energy, E=p2/2m,,with the relativistic formula, E=p2c2+m2c4-mc2. Momentum is related to the wave vector in the usual way: p=hk. In particular, in the extreme relativistic limit, Epc=hck.

(a) Replace h2k2n Equation 5.55 by the ultra-relativistic expression, hck, and calculateEtotin this regime.

dE=h2k22mVπ2k2dk (5.55).

(b) Repeat parts (a) and (b) of Problem 5.35 for the ultra-relativistic electron gas. Notice that in this case there is no stable minimum, regardless of R; if the total energy is positive, degeneracy forces exceed gravitational forces, and the star will expand, whereas if the total is negative, gravitational forces win out, and the star will collapse. Find the critical number of nucleons, Nc , such that gravitational collapse occurs for N>N_{C}is called the Chandrasekhar limit.

(c) At extremely high density, inverse beta decaye-+p+n+v,converts virtually all of the protons and electrons into neutrons (liberating neutrinos, which carry off energy, in the process). Eventually neutron degeneracy pressure stabilizes the collapse, just as electron degeneracy does for the white dwarf (see Problem 5.35). Calculate the radius of a neutron star with the mass of the sun. Also calculate the (neutron) Fermi energy, and compare it to the rest energy of a neutron. Is it reasonable to treat a neutron star non relativistic ally?

(a) Write down the Hamiltonian for two noninteracting identical particles in the infinite square well. Verify that the fermion ground state given in Example 5.1 is an eigenfunction of H, with the appropriate eigenvalue.

(b) Find the next two excited states (beyond the ones in Example 5.1) - wave functions and energies - for each of the three cases (distinguishable, identical bosons, identical fermions).

See all solutions

Recommended explanations on Physics Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free