Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

Suppose you have three particles, and three distinct one-particle stateΨaX,ΨbX,andΨcxare available. How many different three-particle states can be constructed (a) if they are distinguishable particles, (b) if they are identical bosons, (c) if they are identical fermions? (The particles need not be in different states -ΨaX1,ΨaX2Ψax3would be one possibility, if the particles are distinguishable.)

Short Answer

Expert verified

(a)27

(b)10

(c)1

Step by step solution

01

(a)if they are distinguishable

Each particle has 3 possible states: 3 × 3 × 3 = 27.

02

(b) if they are identical bosons

All in same state: aaa, bbb, ccc⇒3.

2 in one state: aab, aac, bba, bbc, cca, ccb⇒6 (each symmetrized).

3 different states: abc (symmetrized)⇒1.

Total: 10.

If they are identical fermions

Only abc (antisymmetrized) ⟹ 1.

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

(a) Find the percent error in Stirling’s approximation for z = 10 ?

(b)What is the smallest integer z such that the error is less than 1%?

Suppose we use delta function wells, instead of spikes (i.e., switch the sign ofin Equation 5.57). Analyze this case, constructing the analog to Figure 5.6. this requires no new calculation, for the positive energy solutions (except that β is now negative; use β=-1.5 for the graph), but you do need to work out the negative energy solutions (letk-2mE/handZ-ka,forE<0) and , for). How many states are there in the first allowed band?

Derive the Stefan-Boltzmann formula for the total energy density in blackbody radiation

EV=(π2kB415ħ3C3)T4=7.57×10-16Jm-3K-4T4

(a) Calculate<1/r1-r2>for the stateψ0(Equation 5.30). Hint: Dod3r2integral

first, using spherical coordinates, and setting the polar axis alongr1, so

that

ψ0r1,r2=ψ100r1ψ100r2=8πa3e-2r1+r2/a(5.30).

r1-r2=r12+r22-2r1r2cosθ2.

Theθ2integral is easy, but be careful to take the positive root. You’ll have to

break ther2integral into two pieces, one ranging from 0 tor1,the other fromr1to

Answer: 5/4a.

(b) Use your result in (a) to estimate the electron interaction energy in the ground state of helium. Express your answer in electron volts, and add it toE0(Equation 5.31) to get a corrected estimate of the ground state energy. Compare the experimental value. (Of course, we’re still working with an approximate wave function, so don’t expect perfect agreement.)

E0=8-13.6eV=-109eV(5.31).

(a) If ψaandψb are orthogonal, and both normalized, what is the constant A in Equation 5.10?

(b) Ifrole="math" localid="1658225858808" ψa=ψb (and it is normalized), what is A ? (This case, of course, occurs only for bosons.)

See all solutions

Recommended explanations on Physics Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free