Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

Imagine two non interacting particles, each of mass , in the one dimensional harmonic oscillator potential (Equation 2.43). If one is in the ground state, and the other is in the first excited state, calculate (x1-x2)2assuming
(a) they are distinguishable particles, (b) they are identical bosons, and (c) they are identical fermions. Ignore spin (if this bothers you, just assume they are both in the same spin state.)

Short Answer

Expert verified

(a) ((x1-x2)2)=2hmω.

(b)(x1-x2)2=hmω

(c)(x1-x2)2=3hmω

Step by step solution

01

(a) Determining ⟨(x1-x2)2⟩ when they are distinguishable particles.

From the Previous problem :

x0=0x1=0x20=h2mωx21=3h2mω

We need to calculate:

0x1=-xψ0xψ1xdx=h2mω1δ0,0+0δ1,-1=h2mω

From Equation 5.21:

role="math" localid="1658402226570" x1-x22=h2mω+3h2mω-0=2hmω

02

(b) Determining ⟨(x1-x2)2⟩when they are identical bosons,

From Equation 5.21

x1-x22=2ħmω+2h2mω=hmω

03

(c) Determining ⟨(x1-x2)2⟩ when they identical fermions,

From Equation 5.21:

x1-x22=2hmω+2h2mω=3hmω

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

Suppose you have three particles, and three distinct one-particle stateΨaX,ΨbX,andΨcxare available. How many different three-particle states can be constructed (a) if they are distinguishable particles, (b) if they are identical bosons, (c) if they are identical fermions? (The particles need not be in different states -ΨaX1,ΨaX2Ψax3would be one possibility, if the particles are distinguishable.)

(a) Calculate<1/r1-r2>for the stateψ0(Equation 5.30). Hint: Dod3r2integral

first, using spherical coordinates, and setting the polar axis alongr1, so

that

ψ0r1,r2=ψ100r1ψ100r2=8πa3e-2r1+r2/a(5.30).

r1-r2=r12+r22-2r1r2cosθ2.

Theθ2integral is easy, but be careful to take the positive root. You’ll have to

break ther2integral into two pieces, one ranging from 0 tor1,the other fromr1to

Answer: 5/4a.

(b) Use your result in (a) to estimate the electron interaction energy in the ground state of helium. Express your answer in electron volts, and add it toE0(Equation 5.31) to get a corrected estimate of the ground state energy. Compare the experimental value. (Of course, we’re still working with an approximate wave function, so don’t expect perfect agreement.)

E0=8-13.6eV=-109eV(5.31).

Suppose you could find a solutionψ(r1,r2,...,rz)to the Schrödinger equation (Equation 5.25), for the Hamiltonian in Equation 5.24. Describe how you would construct from it a completely symmetric function, and a completely anti symmetric function, which also satisfy the Schrödinger equation, with the same energy.

role="math" localid="1658219144812" H^=j=1Z-ħ22mj2-14πo,0Ze2rj+1214πo,0j1Ze2rj-rk (5.24).

role="math" localid="1658219153183" H^ψ=E (5.25).

(a) Using Equations 5.59 and 5.63, show that the wave function for a particle in the periodic delta-function potential can be written in the form

ψ(X)=C[sinkx+e-ikasina-x]0xa

(b) There is an exception; At the top of a band where z is an integer multiple ofπyielsψ(x)=0 yields .

Find the correct wave function for the case. Note what happens toψeach delta function.

Show that most of the energies determined by Equation 5.64are doubly degenerate. What are the exceptional cases? Hint: Try it for N=1,2,3,4.... , to see how it goes. What are the possible values of cos(ka)in each case?

See all solutions

Recommended explanations on Physics Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free