Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

Use the method of Lagrange multipliers to find the rectangle of largest area, with sides parallel to the axes that can be inscribed in the ellipse(xa)2+(yb)2=1. What is the maximum area?

Short Answer

Expert verified

The maximum area of an inscribed triangle can have is=2ab

Step by step solution

01

Define area of triangle

The area of a triangle is defined as the total space occupied by a triangle's three sides in a two-dimensional plane. The basic formula for calculating the area of a triangle is half the product of its base and height.

02

Calculating the area of inscribed rectangle

We want area of the inscribed rectangle to be maximum. If its sides are equal to 2x and 2y, its area is: a(x,y)=4xy.

G(x,y,λ)=4xy+λ(xa)2+(yb)2-1Gx=0=4y+2λxa2y=-λx2a2Gy=0=4x+2λyb24x=-λy2b2=-λ2xa2b2

λ1=0orλ2=±2ab

03

Calculating the maximum area

Because side of a rectangular must be positive

y=-λx2a2=±bxa=bxaGλ=0=(xa)2+(yb)2-1x2a2+b2x2a2b2=1x2=a22x=a2,y=a2

So maximum area of an inscribed triangle can have is A=4xy=2ab

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

Chlorine has two naturally occurring isotopes,CI35and CI37. Show that

the vibrational spectrum of HCIshould consist of closely spaced doublets,

with a splitting given by v=7.51×10-4v, where v is the frequency of the

emitted photon. Hint: Think of it as a harmonic oscillator, with ω=k/μ, where

μis the reduced mass (Equation 5.8 ) and k is presumably the same for both isotopes.

Obtain equation 5.76 by induction. The combinatorial question is this: How many different ways you can put N identical balls into d baskets (never mind the subscriptfor this problem). You could stick all of them into the third basket, or all but one in the second basket and one in the fifth, or two in the first and three in the third and all the rest in the seventh, etc. Work it out explicitly for the casesN=1,N=2,N=3andN=4; by that stage you should be able to deduce the general formula.

Suppose you had three particles, one in stateψa(x), one in stateψb(x), and one in stateψc(x). Assuming ψa,ψb, andψc are orthonormal, construct the three-particle states (analogous to Equations 5.15,5.16, and 5.17) representing

(a) distinguishable particles,

(b) identical bosons, and

(c) identical fermions.

Keep in mind that (b) must be completely symmetric, under interchange of any pair of particles, and (c) must be completely antisymmetric, in the same sense. Comment: There's a cute trick for constructing completely antisymmetric wave functions: Form the Slater determinant, whose first row isψa(x1),ψb(x1),ψc(x1) , etc., whese second row isψa(x2),ψb(x2),ψc(x2) , etc., and so on (this device works for any number of particles).

Calculate the Fermi energy for noninteracting electrons in a two-dimensional infinite square well. Let σ be the number of free electrons per unit area.

(a)Use Equation5.113 to determine the energy density in the wavelength rangedλ. Hint: setρ(ω)=ρ-(λ), and solve forρ(λ)-

(b)Derive the Wien displacement law for the wavelength at which the blackbody energy density is a maximum
λmax=2.90×10-3mKT

You'll need to solve the transcendental equation(5×x)=5e-x, using a calculator (or a computer); get the numerical answer accurate to three significant digits.

See all solutions

Recommended explanations on Physics Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free