Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

Show that most of the energies determined by Equation 5.64are doubly degenerate. What are the exceptional cases? Hint: Try it for N=1,2,3,4.... , to see how it goes. What are the possible values of cos(ka)in each case?

Short Answer

Expert verified

There is no degeneracy at the top and the bottom of the band whencoska=±1

Step by step solution

01

Define the Schrodinger equation

  • A differential equation for the quantum mechanical description of matter in terms of the wave-like characteristics of particles in a field. The solution has to do with the probability density of a particle in space and time.
  • The time-dependent Schrodinger equation is represented as

ddtψ(t)>=Hψ(t)>

02

Analyze the condition

For Ka=2πn/Nwe have a condition on n:n=0,12,...,N-1. Because for larger n, we don't get new solutions.

We are going to write solutions for cosKafor couple of N

Ka=2πnN

Value of different ncorresponds to a distinct state

03

Analyze the energies

N=1,n=0coska=1Non- degenerate

N=2,n=0,1coska=1,1Non- degenerate

N=3,n=0,1,2cos(ka)=1,-12,-12First one is non -degenerate other one is degenerate

N=4,n=0,1,2,3cos(ka)=1,0,-1,0Two are non -degenerate and two are degenerate

When we have coska=±1, then we don't have degeneracy. This happens at the top and at the bottom of the band.

So, we don’t have degeneracy at the top and the bottom of the band whencos(ka)=±1

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

We can extend the theory of a free electron gas (Section 5.3.1) to the relativistic domain by replacing the classical kinetic energy, E=p2/2m,,with the relativistic formula, E=p2c2+m2c4-mc2. Momentum is related to the wave vector in the usual way: p=hk. In particular, in the extreme relativistic limit, Epc=hck.

(a) Replace h2k2n Equation 5.55 by the ultra-relativistic expression, hck, and calculateEtotin this regime.

dE=h2k22mVπ2k2dk (5.55).

(b) Repeat parts (a) and (b) of Problem 5.35 for the ultra-relativistic electron gas. Notice that in this case there is no stable minimum, regardless of R; if the total energy is positive, degeneracy forces exceed gravitational forces, and the star will expand, whereas if the total is negative, gravitational forces win out, and the star will collapse. Find the critical number of nucleons, Nc , such that gravitational collapse occurs for N>N_{C}is called the Chandrasekhar limit.

(c) At extremely high density, inverse beta decaye-+p+n+v,converts virtually all of the protons and electrons into neutrons (liberating neutrinos, which carry off energy, in the process). Eventually neutron degeneracy pressure stabilizes the collapse, just as electron degeneracy does for the white dwarf (see Problem 5.35). Calculate the radius of a neutron star with the mass of the sun. Also calculate the (neutron) Fermi energy, and compare it to the rest energy of a neutron. Is it reasonable to treat a neutron star non relativistic ally?

In view ofProblem 5.1, we can correct for the motion of the nucleus in hydrogen by simply replacing the electron mass with the reduced mass.

(a) Find (to two significant digits) the percent error in the binding energy of hydrogen (Equation 4.77) introduced by our use of m instead of μ.

E1=-m2h2e24π'2=-13.6eV(4.77).

(b) Find the separation in wavelength between the red Balmer lines n=3n=2for hydrogen and deuterium (whose nucleus contains a neutron as well as the proton).

(c) Find the binding energy of positronium (in which the proton is replaced by a positron—positrons have the same mass as electrons, but opposite charge).

(d) Suppose you wanted to confirm the existence of muonic hydrogen, in which the electron is replaced by a muon (same charge, but 206.77 times heavier). Where (i.e. at what wavelength) would you look for the “Lyman-α” line n=2n=1?.

Certain cold stars (called white dwarfs) are stabilized against gravitational collapse by the degeneracy pressure of their electrons (Equation 5.57). Assuming constant density, the radius R of such an object can be calculated as follows:

P=23EtotV=23h2kF510π2m=(3π2)2/3h25mp5/3(5.57)

(a) Write the total electron energy (Equation 5.56) in terms of the radius, the number of nucleons (protons and neutrons) N, the number of electrons per nucleon d, and the mass of the electron m. Beware: In this problem we are recycling the letters N and d for a slightly different purpose than in the text.

Etot=h2V2π2m0kFK4dk=h2kF5V10π2m=h2(3π2Nd)5/310π2mV-2/3(5.56)

(b) Look up, or calculate, the gravitational energy of a uniformly dense sphere. Express your answer in terms of G (the constant of universal gravitation), R, N, and M (the mass of a nucleon). Note that the gravitational energy is negative.

(c) Find the radius for which the total energy, (a) plus (b), is a minimum.

R=(9π4)2/3h2d5/3GmM2N1/3

(Note that the radius decreases as the total mass increases!) Put in the actual numbers, for everything except , using d=1/2 (actually, decreases a bit as the atomic number increases, but this is close enough for our purposes). Answer:

(d) Determine the radius, in kilometers, of a white dwarf with the mass of the sun.

(e) Determine the Fermi energy, in electron volts, for the white dwarf in (d), and compare it with the rest energy of an electron. Note that this system is getting dangerously relativistic (seeProblem 5.36).

(a)Use Equation5.113 to determine the energy density in the wavelength rangedλ. Hint: setρ(ω)=ρ-(λ), and solve forρ(λ)-

(b)Derive the Wien displacement law for the wavelength at which the blackbody energy density is a maximum
λmax=2.90×10-3mKT

You'll need to solve the transcendental equation(5×x)=5e-x, using a calculator (or a computer); get the numerical answer accurate to three significant digits.

Obtain equation 5.76 by induction. The combinatorial question is this: How many different ways you can put N identical balls into d baskets (never mind the subscriptfor this problem). You could stick all of them into the third basket, or all but one in the second basket and one in the fifth, or two in the first and three in the third and all the rest in the seventh, etc. Work it out explicitly for the casesN=1,N=2,N=3andN=4; by that stage you should be able to deduce the general formula.

See all solutions

Recommended explanations on Physics Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free