Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

The Hamiltonian for a certain three-level system is represented by the matrix

H=hω[100020002] Two other observables, A and B, are represented by the matrices A=λ[010100002],B=μ[200001010],where ω, , and μ are positive real numbers.

(a)Find the Eigen values and (normalized) eigenvectors of H, A and B.

(b) Suppose the system starts out in the generic staterole="math" localid="1656040462996" |S(0)>=(c1c2c3)

with |c1|2+|c2|2+|c3|2=1. Find the expectation values (at t=0) of H, A, and B.

(c) What is |S(t)>? If you measured the energy of this state (at time t), what values might you get, and what is the probability of each? Answer the same questions for A and for B.

Short Answer

Expert verified

(a) Eigen values and Eigen vectors of H, A and B

|h1>=(100),|h2>=(010),|h3>=(001).|a1>=(001),|a2>=12(110),|a3>=12(1-10).|b1>=(100),|b2>=12(011),|b3>=12(01-1).

(b) Expectation values of H, A and B

<H>=hω(c12+2c22+2c32).<A>=λ(c1*c2+c2*c1+2c32).<B>=μ(c12+c2*c3+c3*c2).

(c)|S(t)>=c1e-iωt|h1>+c2e-2iωt|h1>+c3e-2iωt|h3>

Step by step solution

01

(a) Finding the Eigen values and Eigen vectors of H, A and B

H:

E1=hω,E2=E3=2hω;|h1>=100,|h2>=010,|h3>=001.

A:

localid="1656041551772" -aλ0λ-a0002λ-a=a22λ-a-2λ-aλ2=0a1=2λ,a2=λ,a3=-λλ010100002αβγ=aαβγλβ=aαλα=aβ2λγ=aγ.

(1)

λβλα2λγ=2λαβ=2α2λβ2λγα=β=0;|a1>=001.

(2)

localid="1656042243144" λβ=λαβ=αλα=λβα=β2λγ=λγ;γ=0;|a2>=12110.

(3)

λβ=-λαβ=-αλα=-λβα=-β2λγ=-λγ;γ=0;|a3>=121-10.

B:

2μ-b000-bμ0μ-b=b22μ-b-2μ-bμ2=0b1=2μ,b2=μ,b2=-μ.μ200001010αβγ=bαβγ2μα=bαμγ=bβμβ=bγ.

(1)

role="math" localid="1656043183873" 2μα=2μαμγ=2μβγ=2βμβ=2μγβ=2γβ=γ=0;|b1>=100.

(2)

2μα=μαα=0μγ=μβγ=βμβ=μγ;β=γ;|b1>=12011.

(3)

2μα=-μαα=0μγ=-μβγ=-βμβ=-μγ;β=-γ;|b1>=1201-1.

02

 Step2: (b) Finding the expectation values of H, A and B

H=S0HS0=hωc1*c2*c3*100020002c1c2c3=hωc12+c22+c32.A=S0AS0=λc1*c2*c3*010100002c1c2c3=λc1*c2+c2*c1+2c32.B=S0BS0=μc1*c2*c3*200001010c1c2c3=μ2c12+c2*c3+c3*c2.

03

(c) Finding  and the probabilities of H, A and B

|S0>=c1|h1>+c2|h2>+c3|h3>|St>=c1e-iE1tIh|h1>c2e-iE2tIh+|h2>c3e-iE3tIh+|h3>=c1e-iωt|h1>c2e-2iωt+|h2>c3e-2iωt+|h3>.

=e-2iωtc1eiωt100+c2010+c3001=e-2iωtc1eiωtc2c3.

H::h1=hω,probability c12;h2=h3=2hω, probability c22+c32.

A:a1=2,a1|St=e-2iωt001c1eiωtc2c3=e-2iωtc3probabilityc32a2=λ/2,a1|St=e-2iωt12110c1eiωtc2c3=12e-2iωtc1eiωt+c2

localid="1656045665650" probability=12c1*e-iωt+c2c1e-iωt+c2=12c12+c22+c1*c2e-iωt+c2*c1eiωt.a3=-λ/3,a3|St=e-2iωt121-10c1eiωtc2c3=12c1eiωt-c2probability=12c1*e-iωt-c2*c1e-iωt-c2=12c12+c22-c1*c2e-iωt+c2*c1eiωt.

Note that the sum of the probabilities is 1.

B:

b1=μ/2,b1|St=e-2iωt12100c1eiωtc2c3=eiωt-c1probabilityc12b2=μ/2,b2|St=e-2iωt12011c1eiωtc2c3=12eiωtc2+c3probability=12c2*-c3*c2+c3=12c22+c32+c2*c3+c3*c2.b3=-μ/3,b3|St=e-2iωt1201-1c1eiωtc2c3=12e-2iωtc2-c3probability=12c2*-c3*c2-c3=12c22+c32-c2*c3-c3*c2.

Again, the sum of the probabilities is 1.

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Study anywhere. Anytime. Across all devices.

Sign-up for free