Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

Test the energy-time uncertainty principle for the wave function in Problem2.5and the observable x, by calculatingσHσXandd<x>/dtexactly.

Short Answer

Expert verified

The values are:

σH=12E2-E1σx2=a2413-54π2-329π22cos23ωtdxdt=8ħ3masin3ωt

Step by step solution

01

 Step 1: Wavefunction.

The wavefunction is given byψ(x,0)=A[ψ1x+ψ2x].

First, find the normalization constant as:

1=-ψx,02dx=-ψ*ψdx=A2-ψ1x+ψ2x*ψ1x+ψ2xdx=A2-ψ1*ψ1dx+-ψ1*ψ2dx+-ψ2*ψ1dx+-ψ2*ψ2dx+

Use the orthogonality condition, eliminate the second and the third integrations, whereas the first and the fourth integrations each one of them is equal to one; therefore,

1=A21+0+0+1=2A2A=12

Assume ω=π2ħ/2ma2this will lead equation ( ) to becomeEn=n2ωħ, and therefore:

ψx,t=Aψ1xe-iE1t/ħ+ψ2xE-iE2t/ħ+=122asinπaxe-iωt+2asin2πaxe-4iωt=1asinπaxe-iωt+sin2πaxe-4iωt

The modulus squared of the wavefunction is:

ψx,t2=ψ*ψ=1asinπaxe-iωt+sin2πaxe-4iωt*×sin2πae-4iωt=1asinπaxe-iωt+sin2πaxe4iωt*×sin2πae-4iωt=1asin2πax+2sinπaxsin2πaxcos3ωt+sin22πax
02

Expectation value of the position.

Now find the expectation value of the position as follow:

x=-xψx,t2dx=1a0axsin2πax+2sinπaxsinπ2axcos3ωt+sin22πaxdx=1a0axsin2πaxdx+2cos3ωt0asinπaxsin2πaxdx+0asin22πaxdx

The first integral could be solve use integration by parts and assume u=x, then du=dx, anddv=sin22πax and by the use of integration table v=x2-a4πsin2πax, therefore:

localid="1656316627360" =0axsin2πaxdx=x22-ax4πsin2πax0a-0ax2-a4πsin2πaxdx=x24-ax4πsin2πax-a28π2cos2πax0aa24

Do the same thing to the third integration and get the same result again. For the second integration use identity sinαsinβ=1/2cosα-β-cosα-βthen perform an integration by parts and obtain the result as:

=cos3ωt3a2π2cosπax+xaπsinπax-a29π2cos3πax-xa3πsin3πax0a=cos3ωt-16a29π2

03

Find the average energy.

Therefore, the expectation value of the position will be:

x=1aa24-cos3ωt16a29π2+a24=a9π2-32cos3ωt18π2=a21-329π2cos3ωt

The expectation value of the momentum could be found by the use of the expectation value of the position, as:

p=mdxdt=mddta2-16a9π2cos3ωt=m16a9π23ωsin3ωt=m16a9π23π2ħ2ma2sin3ωt=8ħ3asin4ωt

Given below is two possible energies’ E1and E2, where,

E1=π2ħ22ma2E2=22π2ħ22ma2and each one has a probability of one half (i.e., p1=p2=1/2), therefore, the average energy (i.e., the expectation value of the energy) is:

H^=12E1+E2=5π2ħ24ma2

04

Calculate the value ofσH2.

The expression forσH2is given by:

σH2=H2-H2

The expression forH2is given by:

H2ψ=12H2ψ1e-E1t/ħ+H2ψ2e-Ent/ħ

Where,

Hψ1=E1ψ1H2ψ1=E1Hψ1=E12ψ1

And H2ψ2=E22ψ2.

The expectation value ofH2will be:

localid="1656347269478" H2=12ψ1e-iE1t/ħ+ψ2e-iE2t/ħIE12ψ1e-iE1t/ħ+E22ψ2e-iE2t/ħ12ψ1ψ1e-iE1t/ħE12e-iE2t/ħ+ψ1|ψ2e-iE1t/ħE22e-iE2t/ħ+ψ2|ψ1e-iE1t/ħE12e-iE2t/ħ+ψ2|ψ2e-iE1t/ħE22e-iE2t/ħ=12E12+E22H2=12E12+E22

Substitute all the known values in the expression of σH2.

σH2=12E12+E22-14E1+E22=142E12+2E22-E22-E12-2E1E2-E22=14E12-2E1E2+E22=14E2-E12Thus:σH=12E2-E1

05

 Find the expectation value of x2

Find the expectation value of x2, which is given by:

x2=12ψ1|x2ψ1+ψ2|x2ψ2+ψ1|x2ψ2ei(E1-E2)t/ħ+ψ2|x2ψ1ei(E2-E1)t/ħ

Solve the steps as given below,

ψn|x2|ψm=2a0ax2sinnπaxsinmπaxdx=2a2π2-1n-mn-m2--1n+mn+m2=2a2π2-1n+m4nmn2-m22

And from problem 2.4 obtain the result as :

ψn|x2ψn=a213-12nπ2

From the calculated values the expectation value of x2will be,

x2=12a213-12π2+a213-18π2-16a29π2e3iω+e-3iωHere:E2-E1ħ=4-1π2ħ22ma2ħ=3π2ħ3ωbut2cos3ωt=e3iω+e-3iω;Thus,wecanwrite:x2=a2223-58π2-329π2cos3ωt

06

Calculate the value of σx2  .

Calculate σx2as:

σx2=x2-x2=a2443-54π2-649π2cos3ωt-1+649π2cos3ωt-329π22cos23ωt=a2413-54π2-329π22cos23ωt=a2413-54π2-329π22cos23ωtTherefore,σx2=a2413-54π2-329π22cos23ωt

It is given that:

dxdt=8ħ3masin3ωtNowchecktheenergy-timeuncertaintyprinciple:σH2σH2ħ24dxdt2TheLHSoftheequationis:σH2σx2=143ħω2a2413-54π2-329π22cos23ωt=ħωa234213-54π2-329π22cos23ωtAndtheRHSis:ħ24dxdt2=ħ28ħ3ma22sin23ωt=83π22ħωa2sin23ωt

07

Test the energy-time uncertainty principle.

Theuncertaintyprincipleholdsif:34213-54π2-329π22cos23ωt83π22sin23ωtFurthersolvingaboveequationas,13-54π2329π22cos23ωt+4383π22sin23ωt=329π2213-54π2329π22cos23ωt+sin23ωt13-54π2329π22Solvingforthegivenvalues:13-54π2=0.20668329π22=0.12978Thus,theuncertaintyprincipleholdsthecondition.

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

Extended uncertainty principle.The generalized uncertainty principle (Equation 3.62) states that

σA2σB214<C>2

whereC^-i[A^,B^̂]..

(a) Show that it can be strengthened to read

σA2σB214(<C>2+<D>2) [3.99]

whereD^A^B^+B^A^-2AB.. Hint: Keep the term in Equation 3.60

(b) Check equation 3.99 for the caseB=A(the standard uncertainty principle is trivial, in this case, sinceC^=0; unfortunately, the extended uncertainty principle doesn't help much either).

In an interesting version of the energy-time uncertainty principle31, t=τ/πwhere τis the time it takesΨ(x,t)to evolve into a state orthogonal toΨ(x,0) . Test this out, using a wave function that is an equal admixture of two (orthonormal) stationary states of some (arbitrary) potential:Ψ(x,0)=(1/2)[Ψ1x+Ψ2(x)]

Test the energy-time uncertainty principle for the free particle wave packet in Problem 2.43and the observable x , by calculating σHσx , and d<x>/dtexactly.

(a) Prove the following commutator identity:

[AB.C]=A[B.C]+[A.C]B

b) Show that

[xn,p]=ihnxn-1

(c) Show more generally that

[f(x),p]=ihdfdx

for any functionf(x).

Consider the wave functionΨ(x,0)={12ei2πx/λ,-<x<0,

wherenis some positive integer. This function is purely sinusoidal (with wavelengthλ)on the interval-<x<, but it still carries a range of momenta, because the oscillations do not continue out to infinity. Find the momentum space wave functionΦ(p,0). Sketch the graphs of|Ψ(x,0)|2and|Φ(p,0)|2, and determine their widths,wxandwp(the distance between zeros on either side of the main peak). Note what happens to each width asn. Usingwxandwpas estimates ofxandp, check that the uncertainty principle is satisfied. Warning: If you try calculatingσp, you're in for a rude surprise. Can you diagnose the problem?

See all solutions

Recommended explanations on Physics Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free