Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

In Ex. 3.8 we determined the electric field outside a spherical conductor

(radiusR)placed in a uniform external field E0. Solve the problem now using

the method of images, and check that your answer agrees with Eq. 3.76. [Hint:Use

Ex. 3.2, but put another charge, -q,diametrically opposite q.Leta, with14πε02qa2=-E0held constant.]

Short Answer

Expert verified

The potential outside a spherical conductor of radius placed in a uniform electric field E0is given by

V=-E0r-R3r2cosθ.

Step by step solution

01

Given data

The radius of the sphere is R.

The uniform external field isE0.

02

Uniform electric field replaced by a charge 

The external field E0is replaced by a charge q.

role="math" localid="1657522471977" E0=-2q4πε0a2

Here, a is the area.

03

Potential outside a conducting sphere placed in a uniform electric field

Consider a charge q at a distance a long x axis from the origin.

An image charge -q is then placed at x=-a .

Let the induced charge on the sphere be q'=-Raqatx=b=R2awhereb<R.

The corresponding image charge -q'is considered at x=-b.

The potential at r is then,

V=14πε0q1r1-1r2+q'1r3-1r4...(1)

Here

r1=r2+a2-2racosθr2=r2+a2+2racosθr3=r2+b2-2rbcosθr4=r2+a2+2rbcosθ

localid="1657523731983" Forarthefollowingsimplificationfollows,1r1-1r2=1r2+a2-2racosθ-1r2+a2+2racosθ1+racosθa-1-racosθa=2ra2cosθ

Similarlyforrbthesecondtermsimplifiesasfollows,1r3-1r42br2cosθ=2R2ar2cosθ

Substitutionofthesetworesultsandtheformofq'inequation(1)V=q4πε02ra2-2R3a2r2cosθ=2q4πε0r-R3r2cosθ

Substitutionsofequationresultsin,V=-E0r-R3r2cosθThisisexactlytheresultmentionedinEq.3.76.

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

A "pure" dipoleρis situated at the origin, pointing in thezdirection.

(a) What is the force on a point charge q at (a,0,0)(Cartesian coordinates)?

(b) What is the force on q at (0,0,a)?

(c) How much work does it take to move q from(a,0,0)to (0,0,a)?

(a) Show that the quadrupole term in the multipole expansion can be written as

Vquad(r)=14πε01r3i,j-13ri^rj^Qij ............(1)

(in the notation of Eq. 1.31) where

Qij=12[3r'jr'j-(r')2δij]ρ(r')dτ' ..........(2)

Here

δij={10ifi=jifij ..........(3)

is the Kronecker Delta and Qijis the quadrupole moment of the charge distribution. Notice the hierarchy

Vmon=14πε0Qr;Vdip=14πε0rjpj^r2;Vquad(r^)=14πε01r3ij-13rirj^^Qij;......

The monopole moment (Q) is a scalar, the dipole moment p is a vector, the quadrupole moment Qij is a second rank tensor, and so on.

(b) Find all nine componentsQij of for the configuration given in Fig. 3.30 (assume the square has side and lies in the x-y plane, centered at the origin).

(c) Show that the quadrupole moment is independent of origin if the monopole and

dipole moments both vanish. (This works all the way up the hierarchy-the

lowest nonzero multipole moment is always independent of origin.)

(d) How would you define the octopole moment? Express the octopole term in the multipole expansion in terms of the octopole moment.

The potential at the surface of a sphere (radius R) is given by
V0=kcos3θ,

Where kis a constant. Find the potential inside and outside the sphere, as well as the surface charge densityσ(θ) on the sphere. (Assume there's no charge inside or outside the sphere.)

Use Green's reciprocity theorem (Prob. 3.50) to solve the following

two problems. [Hint:for distribution 1, use the actual situation; for distribution 2,

removeq,and set one of the conductors at potential V0.]

(a) Both plates of a parallel-plate capacitor are grounded, and a point charge qis

placed between them at a distance xfrom plate 1. The plate separation is d. Find the induced charge on each plate. [Answer: Q1=q(xd-1);Q1=qx/d]

(b) Two concentric spherical conducting shells (radii aand b)are grounded, and a point charge is placed between them (at radius r). Find the induced charge on each sphere.

(a) Show that the quadrupole term in the multipole expansion can be written as

V"quad"(r)=14πε01r3(i,j=13r^ir^jQij.....(1)

(in the notation of Eq. 1.31) where

localid="1658485520347" Qij=12[3ri'rj'-(r')2δij]ρ(r')dτ'.....(2)

Here

δ_ij={1ifi=j0ifij.....(3)

is the Kronecker Deltalocalid="1658485013827" (Qij)and is the quadrupole moment of the charge distribution. Notice the hierarchy

localid="1658485969560" Vmon=14πε0Qr;Vdip=14πε0r^ipjr2;Vquad(r)=14πε01r3i,j=13r^ir^jQIJ;...

The monopole moment localid="1658485018381" (Q) is a scalar, the dipole moment localid="1658485022577" (p) is a vector, the quadrupole moment localid="1658485026647" (Qij)is a second rank tensor, and so on.

(b) Find all nine components of localid="1658485030553" (Qij)for the configuration given in Fig. 3.30 (assume the square has side and lies in the localid="1658485034755" x-y plane, centered at the origin).

(c) Show that the quadrupole moment is independent of origin if the monopole and

dipole moments both vanish. (This works all the way up the hierarchy-the

lowest nonzero multipole moment is always independent of origin.)

(d) How would you define the octopole moment? Express the octopole term in the multipole expansion in terms of the octopole moment.

See all solutions

Recommended explanations on Physics Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free