Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

Show that the electric field of a (perfect) dipole (Eq. 3.103) can be written in the coordinate-free form

Edip(r)=14πε014πε01r3[3p·^rr-p]

Short Answer

Expert verified

Answer

The given relation is proved.

Step by step solution

01

Define functions

Write the expression for electric field.

Edipole(r,θ)=14πε01r3ρ[2cosθ^r+sinθ^θ] …… (1)

Here, ρis the dipole moment, θis the orientation of dipole electric field and ε0is the permittivity for the free space.

02

Determine electric field

Write the expression for the electric field.

Edipoler,θ=14πε01r32pcosθ^r+psinθ^θ=14πε01r32pcosθ^r-pcosθ^r+psinθ^θ=14πε01r33pcosθ^r-pcosθ^r+psinθ^θ …… (2)

Write the dipole moment vector.

p=pcosθ^θ …… (3)

p·^r=pcosθ^r-psinθ^θ·^r=pcosθ …… (4)

Substitute pcosθ^r-psinθ^θfor ρand pcosθfor p·^rin equation (2).

Edipoler,θ=14πε01r33pcosθ^r-pcosθ^r+psinθ^θEdipoler,θ=14πε01r33p·^rr-p

Thus, the given relation is proved.

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

Show that the average field inside a sphere of radius R, due to all the charge within the sphere, is

Eave=-14πε0ρR3

Where ρis the total dipole moment. There are several ways to prove this delightfully simple result. Here's one method:

(a) Show that the average field due to a single chargeqat point r inside thesphere is the same as the field at r due to a uniformly charged sphere with

ρ=q/(43πR3), namely

14πε0(43πR3)qr2rdζ'

Where r is the vector from r to dζ

(b) The latter can be found from Gauss's law (see Prob. 2.12). Express the answerin terms of the dipole moment of q.

(c) Use the superposition principle to generalize to an arbitrary charge distribution.

(d) While you're at it, show that the average field over the volume of a sphere, dueto all the charges outside, is the same as the field they produce at the center.

Solve Laplace's equation by separation of variables in cylindrical coordinates, assuming there is no dependence on z (cylindrical symmetry). [Make

sure you find all solutions to the radial equation; in particular, your result must accommodate the case of an infinite line charge, for which (of course) we already know the answer.]

In Ex. 3.9, we derived the exact potential for a spherical shell of radius R , which carries a surface charge σ=kcosθ.

(a) Calculate the dipole moment of this charge distribution.

(b) Find the approximate potential, at points far from the sphere, and compare the exact answer (Eq. 3.87). What can you conclude about the higher multipoles?

a) Using the law of cosines, show that Eq. 3.17 can be written as follows:

Vr,θ=14πε0qr2+a2-2racosθ-qR2+raR2-2racosθ

Where rand θare the usual spherical polar coordinates, with the z axis along the

line through q. In this form, it is obvious that V=0on the sphere, r=R.

b) Find the induced surface charge on the sphere, as a function of θ. Integrate this to get the total induced charge. (What should it be?)

c) Calculate the energy of this configuration.

A thin insulating rod, running from z =-a to z=+a ,carries the

indicated line charges. In each case, find the leading term in the multi-pole expansion of the potential: (a)λ=kcos(πz/2a),(b)λ=ksin(πz/a),(c)λ=kcos(πz/a),wherekisaconstant.

See all solutions

Recommended explanations on Physics Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free