Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

Supposev=0 andlocalid="1654682194645" A=A0sin(kxωt)y^, wherelocalid="1654682226085" A0,ω, and kare constants. Find E and B, and check that they satisfy Maxwell’s equations in a vacuum. What condition must you impose localid="1654682236104" ωon andk?

Short Answer

Expert verified

The electric field is E=A0ωcoskx-ωty^, the magnetic field isB=A0kcoskx-ωtz^, and the imposing condition on ωand k isω=ck.

Step by step solution

01

Expression for Maxwell’s equation of electromagnetism in a vacuum:

Write the expression for Maxwell’s equation of electromagnetism in a vacuum..E=0×E=Bt.B=0×B=μ0ε0Et

Here, E is the electric field, Bis the magnetic field,μ0is the permeability of free space, andε0is the permittivity of free space.

02

Determine the electric and magnetic field:

Write the expression for the electric field for a given vector and scalar potential.

E=-VAt

SubstituteV=0andA=A0sinkx-ωty^in the above expression.

E=-0tA0sinkx-ωty^E=-A0-ωcoskx-ωty^E=A0ωcoskx-ωty^

Write the expression for the magnetic field for a given vector and scalar potential.

B=×A

SubstituteA=A0sinkx-ωty^the above expression.

B=x^y^z^xyz0A0sinkx-ωt0×A0sinkx-ωt

B=x^y0-zA0sinkx-ωt-y^x0-z0+z^xA0sinkx-ωt-y0

B=y^0-0-y^0+XA0sinkx-ωtZ^B=A0kcoskx-ωtZ^

03

Satisfy Maxwell’s equation ∇ .E =0and ∇×E=-∂B∂t :

Calculate .E.

.E=X^X+Y^Y+Z^Z.A0ωcoskx-ωty^.E=YA0ωcoskx-ωt.E=0

Hence, Maxwell’s first equation is satisfied.

Calculate×E:

×E|X^Y^Z^XYX0A0ωcos(kx-ωt)0|

×E=x^y0-ZA0ωcosKx-ωt-y^X0-Z0+Z^XA0ωcosKx-ωt-y0

×E=A0ωcosKx-ωtZ^×E=-A0ωsinKx-ωtZ^

Calculate Bt.

Substitute B=A0kcoskx-ωtz^in the above value.

Bt=tA0kcoskx-ωtz^Bt=-A0ksinkx-ωt-ωz^Bt=A0kωsinkx-ωtz^

SubstituteBt=A0kωsinkx-ωtz^in equation (1).

×E=-Bt

Hence, Maxwell’s second equation is satisfied.

04

Satisfy Maxwell’s equation ∇ .B=0 and ∇×B= μ0ε0 ∂E∂t :

Calculate.B.

.B=x^x+y^y+z^z.A0coskx-ωtz^.B=zA0kcoskx-ωt.B=0

Hence, Maxwell’s third equation is satisfied.

Calculate ×B=μ0ε0Et

B=x^y^z^xyz0A0sinkx-ωt0×A0sinkx-ωt

localid="1654684353464" ×B=-XA0kcoskx-ωty^×B=-A0k2sinkx-ωty^

Calculate localid="1654684988366" Bt

Substitute localid="1654684993827" E=A0ωcoskx-ωty^in the above value.

localid="1654685000985" Et=tA0ωcoskx-ωty^Et=-A0ωsinkx-ωt-ωy^Et=A0ω2sinkx-ωt-ωy^......(2)

Now, if localid="1654685007918" k2=μ0ε0ω2 then, the value of localid="1654685017837" ×Bbecomes,

localid="1654685026709" ×B=-A0μ0ε2sinkx-ωty^......3

Multiply by localid="1654685051493" μ0ε0on both the sides in equation (2).

localid="1654685058720" μ0ε0Et=A0μ0ε0ω2sinkx-ωty^

Substitute in equation (3).

localid="1654685076197" μ0ε0Et=A0μ0ε0ω2sinkx-ωty^

Substitute localid="1654685099465" μ0ε0Et=A0μ0ε0ω2sinkx-ωty^in equation (3).

localid="1654685109547" ×B=μ0ε0Et

Hence, Maxwell’s fourth equation is satisfied.

05

Determine the imposing condition on ω and k:

Write the relation between k and ω.

k2=μ0ε0ω2......4

It is known that:

1C2=μ0ε0

Substitute 1C2=μ0ε0in equation (4).

k2=1C2ω2

k=1Cωω=ck

Therefore, the electric field is E=A0ωcoskx-ωty^, the magnetic field is A=A0kcoskx-ωtz^, and the imposing condition onωand k is ω=ck.

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

See all solutions

Recommended explanations on Physics Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free