Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

Suppose that the magnetic field in some region has the form

B=kzx

(where kis a constant). Find the force on a square loop (side a),lying in the yz

plane and centered at the origin, if it carries a current I,flowing counterclockwise,

when you look down the xaxis.

Short Answer

Expert verified

The force on a square loop of side a,lying in the yzplane and centered at the origin, carrying a current I,flowing counterclockwise in the presence of a magnetic fieldB=kzx is Ia2kz.

Step by step solution

01

Given data

There is a magnetic field of the formB=kzx .

There is a square loop of side alying in the yzplane, centered at the origin and carries a current I,flowing counterclockwise.

02

Force on a current carrying wire in a magnetic field

The force on a wire carrying current I, length Iin a magnetic fieldBis

F=||×B......(1)

03

Force on the current carrying loop

The force on y=a/2and y=-a/2wires are exactly equal and opposite and so they cancel out.

From equation (1), force on the z=a/2 wire

F1=IaB\z-a/2z=Iaka2z=Ia2k2z

From equation (1), force on the z=-a/2 wire

F2=IaB\z-a/2-z=Iak-a2-z=Ia2k2z

Thus, the net force on the wire is Ia2kz .

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

A uniformly charged solid sphere of radius R carries a total charge Q, and is set spinning with angular velocity w about the z axis.

(a) What is the magnetic dipole moment of the sphere?

(b) Find the average magnetic field within the sphere (see Prob. 5.59).

(c) Find the approximate vector potential at a point (r, B) where r>> R.

(d) Find the exact potential at a point (r, B) outside the sphere, and check that it is consistent with (c). [Hint: refer to Ex. 5.11.]

(e) Find the magnetic field at a point (r, B) inside the sphere (Prob. 5.30), and check that it is consistent with (b).

Find the vector potential above and below the plane surface current in Ex. 5.8.

A particle of charge qenters a region of uniform magnetic field B (pointing intothe page). The field deflects the particle a distanced above the original line of flight, as shown in Fig. 5.8. Is the charge positive or negative? In terms of a, d, Band q,find the momentum of the particle.

Prove the following uniqueness theorem: If the current density J isspecified throughout a volume V ,and eitherthe potential A orthe magnetic field B is specified on the surface Sbounding V,then the magnetic field itself is uniquely determined throughout V.[Hint:First use the divergence theorem to show that

[(×U).(×V)-U.(××)]dr=(U××V)da

for arbitrary vector functions Uand V ]

Suppose you wanted to find the field of a circular loop (Ex. 5.6) at a point r that is not directly above the center (Fig. 5.60). You might as well choose your axes so that r lies in the yz plane at (0, y, z). The source point is (R cos¢', R sin¢', 0), and ¢' runs from 0 to 2Jr. Set up the integrals25 from which you could calculate Bx , By and Bzand evaluate Bx explicitly.

See all solutions

Recommended explanations on Physics Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free