Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

In 1897, J. J. Thomson "discovered" the electron by measuring the

charge-to-mass ratio of "cathode rays" (actually, streams of electrons, with charge qand mass m)as follows:

(a) First he passed the beam through uniform crossed electric and magnetic fields Eand B(mutually perpendicular, and both of them perpendicular to the beam), and adjusted the electric field until he got zero deflection. What, then, was the speed of the particles in terms of Eand B)?

(b) Then he turned off the electric field, and measured the radius of curvature, R,

of the beam, as deflected by the magnetic field alone. In terms of E, B,and R,

what is the charge-to-mass ratio (qlm)of the particles?

Short Answer

Expert verified

(a) The speed of the particle getting zero deflection in crossed electric and magnetic field isEB.

(b) The charge to mass ratio of the particle moving in a circular orbit when the electric field is switched off is EB2R.

Step by step solution

01

Given data

There is a beam of electrons with charge qand mass m.

There are uniform crossed electric and magnetic fields Eand Bwhich are mutually perpendicular and perpendicular to the beam of electrons.

02

Force on a charged particle in electric and magnetic field

The net force on a particle of charge qand velocity vmoving in electric and magnetic fields Eand Bis

F=qE+qv×B.....(1)

03

Speed of particle not deflected in electric and magnetic field

From equation (1), if the net force on a charged particle in an electric and magnetic field is zero,

qE=qvBv=EB.....2

Thus, the speed of the particle getting zero deflection in cross electric and magnetic fields is EB.

04

Charge to mass ratio of particle in circular orbit in a magnetic field

Linear momenta of a particle moving in a circular orbit in a magnetic field

mv=qBR

Here, Ris the radius of the circular orbit.

Substitute expression for speed from equation (2)

mEB=qBRqm=EB2R

Thus, the charge to mass ratio of the particle is EB2R.

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

What current density would produce the vector potential, A=kϕ^(where kis a constant), in cylindrical coordinates?

Consider the motion of a particle with mass m and electric charge qein the field of a (hypothetical) stationary magnetic monopole qmat the origin:

B=μ04qmr2r^

(a) Find the acceleration of qe, expressing your answer in terms of localid="1657533955352" q, qm, m, r (the position of the particle), and v(its velocity).

(b) Show that the speed v=|v|is a constant of the motion.

(c) Show that the vector quantity

Q=m(r×v)-μ0qeqm4πr^

is a constant of the motion. [Hint: differentiate it with respect to time, and prove-using the equation of motion from (a)-that the derivative is zero.]

(d) Choosing spherical coordinates localid="1657534066650" (r,θ,ϕ), with the polar (z) axis along Q,

(i) calculate , localid="1657533121591" Qϕ^and show that θis a constant of the motion (so qemoves on the surface of a cone-something Poincare first discovered in 1896)24;

(ii) calculate Qr^, and show that the magnitude of Qis

Q=μ04π|qeqmcosθ|;

(iii) calculate Qθ^, show that

dt=kr2,

and determine the constant k .

(e) By expressing v2in spherical coordinates, obtain the equation for the trajectory, in the form

drdϕ=f(r)

(that is: determine the function )f(r)).

(t) Solve this equation for .r(ϕ)

(a) Check that Eq. 5.65 is consistent with Eq. 5.63, by applying the divergence.

(b) Check that Eq. 5.65 is consistent with Eq. 5.47, by applying the curl.

(c) Check that Eq. 5.65 is consistent with Eq. 5.64, by applying the Laplacian.

Question: Suppose you want to define a magnetic scalar potential U(Eq. 5.67)

in the vicinity of a current-carrying wire. First of all, you must stay away from the

wire itself (there ×B0); but that's not enough. Show, by applying Ampere's

law to a path that starts at a and circles the wire, returning to b (Fig. 5.47), that the

scalar potential cannot be single-valued (that is, U(a)U(b), even if they represent the same physical point). As an example, find the scalar potential for an infinite straight wire. (To avoid a multivalued potential, you must restrict yourself to simply connected regions that remain on one side or the other of every wire, never allowing you to go all the way around.)

Find the exact magnetic field a distancez above the center of a square loop of side w, carrying a current. Verify that it reduces to the field of a dipole, with the appropriate dipole moment, whenzw.

See all solutions

Recommended explanations on Physics Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free