Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

Question: Suppose you want to define a magnetic scalar potential U(Eq. 5.67)

in the vicinity of a current-carrying wire. First of all, you must stay away from the

wire itself (there ×B0); but that's not enough. Show, by applying Ampere's

law to a path that starts at a and circles the wire, returning to b (Fig. 5.47), that the

scalar potential cannot be single-valued (that is, U(a)U(b), even if they represent the same physical point). As an example, find the scalar potential for an infinite straight wire. (To avoid a multivalued potential, you must restrict yourself to simply connected regions that remain on one side or the other of every wire, never allowing you to go all the way around.)

Short Answer

Expert verified

Answer

It is proved that the magnetic potentialin the vicinity of a current-carrying wire cannot be single valued.

This theorem is verified for an infinite straight wire.

Step by step solution

01

Given data

There is a straight wire carrying current I .

02

Magnetic potential and magnetic field of an infinite straight wire

The relation between magnetic field and magnetic potential is

B=-U.....(1)

Magnetic field of an infinite straight wire carrying current in cylindrical coordinates

B=μ0I2πsϕ^.....(2)

Here, is the permeability of free space.

03

Proof that vector potential in the vicinity of a wire carrying current is multivalued. Verification of this theorem for an infinite wire.

Apply Ampere's law on the loop shown in the figure

μ0I=abB·dl

Use equation (1) to get

μ0I=-abU·dl=Ua-Ub

There is non-zero current flowing in the wire.

Thus,

UaUb

Thus, the theorem is proved.

Assume that the magnetic potential of an infinite straight wire is

U=-μ0Iϕ2π

Use equation (1)

B=--μ0Iϕ2π=μ0I2π1sϕϕϕ^=μ0I2πsϕ^

This matches equation (2).

Thus the assumption was correct.

But for this magnetic potential,

UϕUϕ+2π

Thus, the theorem is verified.

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

Suppose there did exist magnetic monopoles. How would you modifyMaxwell's equations and the force law to accommodate them? If you think thereare several plausible options, list them, and suggest how you might decide experimentally which one is right.

(a) Check that Eq. 5.65 is consistent with Eq. 5.63, by applying the divergence.

(b) Check that Eq. 5.65 is consistent with Eq. 5.47, by applying the curl.

(c) Check that Eq. 5.65 is consistent with Eq. 5.64, by applying the Laplacian.

(a) Complete the proof of Theorem 2, Sect. 1.6.2. That is, show that any divergenceless vector field F can be written as the curl of a vector potential . What you have to do is find Ax,Ayand Azsuch that (i) Az/y-Ay/z=Fx; (ii) Ax/z-Az/x=Fy; and (iii) Ay/x-Ax/y=Fz. Here's one way to do it: Pick Ax=0, and solve (ii) and (iii) for Ayand Az. Note that the "constants of integration" are themselves functions of y and z -they're constant only with respect to x. Now plug these expressions into (i), and use the fact that F=0to obtain

Ay=0xFz(x',y,z)dx';Az=0yFx(0,y',z)dy'-0yFy(x',y,z)dx'

(b) By direct differentiation, check that the you obtained in part (a) satisfies ×A=F. Is divergenceless? [This was a very asymmetrical construction, and it would be surprising if it were-although we know that there exists a vector whose curl is F and whose divergence is zero.]

(c) As an example, let F=yx^+zy^+xz^. Calculate , and confirm that ×A=F. (For further discussion, see Prob. 5.53.)

A current flows to the right through a rectangular bar of conducting material, in the presence of a uniform magnetic fieldBpointing out of the page (Fig. 5.56).

(a) If the moving charges are positive, in which direction are they deflected by the magnetic field? This deflection results in an accumulation of charge on the upper and lower surfaces of the bar, which in turn produces an electric force to counteract the magnetic one. Equilibrium occurs when the two exactly cancel. (This phenomenon is known as the Hall effect.)

(b) Find the resulting potential difference (the Hall voltage) between the top and bottom of the bar, in terms ofB,v(the speed of the charges), and the relevant dimensions of the bar.23

(c) How would your analysis change if the moving charges were negative? [The Hall effect is the classic way of determining the sign of the mobile charge carriers in a material.]

A thin glass rod of radius Rand length Lcarries a uniform surface charge σ. It is set spinning about its axis, at an angular velocityω. Find the magnetic field at a distances sRfrom the axis, in the xyplane (Fig. 5.66). [Hint: treat it as a stack of magnetic dipoles.]

See all solutions

Recommended explanations on Physics Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free