Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

(a) Calculate the (time-averaged) energy density of an electromagnetic plane wave in a conducting medium (Eq. 9.138). Show that the magnetic contribution always dominates.

(b) Show that the intensity is(k2μω)E02e-2xz

Short Answer

Expert verified

(a) The energy density of an electromagnetic plane wave in a conductive medium isu=k22μω2E02e2kz .

(b) It is proved that the intensity is (k2μω)E02e-2xz.

Step by step solution

01

Expression for the energy density of an electromagnetic plane wave:

Write the expression for the energy density of an electromagnetic plane wave.

u=12(εE2+1μB2) …… (1)

Here,ε is the permittivity of free space, E is the electric field, μIs the permeability of free space, and B is the magnetic field.

02

Determine the energy density of an electromagnetic plane wave in a conductive medium:

(a)

Write the expression for the electric field.

E~(z,t)=E0ekzcos(kzωt+δE)x^

Squaring on both sides.

E2=E02e2kzcos2(kzωt+δE)

Write the expression for the magnetic field.

B~(z,t)=B0ekzcos(kzωt+δE+ϕ)y^

Squaring on both sides.

B2=B02e2kzcos2(kzωt+δE+ϕ)

SubstituteE2=E02e2kzcos2(kzωt+δE) andB2=B02e2kzcos2(kzωt+δE+ϕ) in equation (1).

u=12(εE02e2kzcos2(kzωt+δE)+1μB02e2kzcos2(kzωt+δE+ϕ))u=12e2kz[εE02cos2(kzωt+δE)+B02μcos2(kzωt+δE+ϕ)]u=12e2kz[ε2E02+12μB02]

Using the relation between B0andE0 , it is known that:

B0=E0εμ1+(σεω)2

Calculate the energy density of an electromagnetic plane wave in a conductive medium.

u=12e2kz[ε2E02+12μ(E0εμ1+(σεω)2)2]u=14e2kzεE022εμk2ω2u=k22μω2E02e2kz

03

Show that the magnetic contribution always dominates:

Write the expression for the magnetic energy.

umag=(B022μ)12e2kz

Write the expression for the density electrostatic energy density.

uelec=12e2kzε2E02

Take the ratio of magnetic energy density and electrostatic energy density.

umaguelec=(B022μ)12e2kz12e2kzε2E02umaguelec=(B02μ)εE02umaguelec=1εμεμ1+(σεω)2

On further solving,

umaguelec=1+(σεω)2>1umag>uelec

Hence, the magnetic contribution is always the dominator.

Therefore, the energy density of an electromagnetic plane wave in a conductive medium isu=k22μω2E02e2kz .

04

Show that the intensity is (k2μω)E02e-2xz(k2μω)E02e-2xz:

(b)

Write the expression for intensity.

I=cu

Substituteu=k22μω2E02e2kz and c=ωkin the above expression.

I=k22μω2E02e2kzωkI=(ωk)k22μω2E02e2kzI=k2μωE02e2kz

Therefore, it is proved that I=k2μωE02e2kz.

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

Consider a particle of charge q and mass m, free to move in the xyplane in response to an electromagnetic wave propagating in the z direction (Eq. 9.48—might as well set δ=0)).

(a) Ignoring the magnetic force, find the velocity of the particle, as a function of time. (Assume the average velocity is zero.)

(b) Now calculate the resulting magnetic force on the particle.

(c) Show that the (time) average magnetic force is zero.

The problem with this naive model for the pressure of light is that the velocity is 90°out of phase with the fields. For energy to be absorbed there’s got to be some resistance to the motion of the charges. Suppose we include a force of the form ymv, for some damping constant y.

(d) Repeat part (a) (ignore the exponentially damped transient). Repeat part (b), and find the average magnetic force on the particle.

Question: Use Eq. 9.19 to determineA3andδ3in terms ofrole="math" localid="1653473428327" A1,A2,δ1, andδ2.

Calculate the exact reflection and transmission coefficients, without assuming μ1=μ2=μ0. Confirm that R + T = 1.

Find the width of the anomalous dispersion region for the case of a single resonance at frequency ω0. Assumeγ<<ω0 . Show that the index of refraction assumes its maximum and minimum values at points where the absorption coefficient is at half-maximum.

Suppose you send an incident wave of specified shape, g1(z-v1t), down string number 1. It gives rise to a reflected wave, hR(z+v1t), and a transmitted wave, gT(z+v2t). By imposing the boundary conditions 9.26 and 9.27, find hRand gT.

See all solutions

Recommended explanations on Physics Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free