Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

(a) Calculate the (time-averaged) energy density of an electromagnetic plane wave in a conducting medium (Eq. 9.138). Show that the magnetic contribution always dominates.

(b) Show that the intensity is(k2μω)E02e-2xz

Short Answer

Expert verified

(a) The energy density of an electromagnetic plane wave in a conductive medium isu=k22μω2E02e2kz .

(b) It is proved that the intensity is (k2μω)E02e-2xz.

Step by step solution

01

Expression for the energy density of an electromagnetic plane wave:

Write the expression for the energy density of an electromagnetic plane wave.

u=12(εE2+1μB2) …… (1)

Here,ε is the permittivity of free space, E is the electric field, μIs the permeability of free space, and B is the magnetic field.

02

Determine the energy density of an electromagnetic plane wave in a conductive medium:

(a)

Write the expression for the electric field.

E~(z,t)=E0ekzcos(kzωt+δE)x^

Squaring on both sides.

E2=E02e2kzcos2(kzωt+δE)

Write the expression for the magnetic field.

B~(z,t)=B0ekzcos(kzωt+δE+ϕ)y^

Squaring on both sides.

B2=B02e2kzcos2(kzωt+δE+ϕ)

SubstituteE2=E02e2kzcos2(kzωt+δE) andB2=B02e2kzcos2(kzωt+δE+ϕ) in equation (1).

u=12(εE02e2kzcos2(kzωt+δE)+1μB02e2kzcos2(kzωt+δE+ϕ))u=12e2kz[εE02cos2(kzωt+δE)+B02μcos2(kzωt+δE+ϕ)]u=12e2kz[ε2E02+12μB02]

Using the relation between B0andE0 , it is known that:

B0=E0εμ1+(σεω)2

Calculate the energy density of an electromagnetic plane wave in a conductive medium.

u=12e2kz[ε2E02+12μ(E0εμ1+(σεω)2)2]u=14e2kzεE022εμk2ω2u=k22μω2E02e2kz

03

Show that the magnetic contribution always dominates:

Write the expression for the magnetic energy.

umag=(B022μ)12e2kz

Write the expression for the density electrostatic energy density.

uelec=12e2kzε2E02

Take the ratio of magnetic energy density and electrostatic energy density.

umaguelec=(B022μ)12e2kz12e2kzε2E02umaguelec=(B02μ)εE02umaguelec=1εμεμ1+(σεω)2

On further solving,

umaguelec=1+(σεω)2>1umag>uelec

Hence, the magnetic contribution is always the dominator.

Therefore, the energy density of an electromagnetic plane wave in a conductive medium isu=k22μω2E02e2kz .

04

Show that the intensity is (k2μω)E02e-2xz(k2μω)E02e-2xz:

(b)

Write the expression for intensity.

I=cu

Substituteu=k22μω2E02e2kz and c=ωkin the above expression.

I=k22μω2E02e2kzωkI=(ωk)k22μω2E02e2kzI=k2μωE02e2kz

Therefore, it is proved that I=k2μωE02e2kz.

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

A microwave antenna radiating at 10GHzis to be protected from the environment by a plastic shield of dielectric constant2.5. . What is the minimum thickness of this shielding that will allow perfect transmission (assuming normal incidence)? [Hint: Use Eq. 9.199.]

(a) Show that the skin depth in a poor conductor σ<<ωεis (εσ)2μ(independent of frequency). Find the skin depth (in meters) for (pure) water. (Use the static values of ε,μand σ; your answers will be valid, then, only at relatively low frequencies.)

(b) Show that the skin depth in a good conductor (σ<<ωε)is λ2π(where λ is the wavelength in the conductor). Find the skin depth (in nanometers) for a typical metal (σ>>Ωm107-1)in the visible range (ω1015/s), assuming ε=ε0and μμ0. Why are metals opaque?

(c) Show that in a good conductor the magnetic field lags the electric field by 45°, and find the ratio of their amplitudes. For a numerical example, use the “typical metal” in part (b).

The intensity of sunlight hitting the earth is about 1300Wm2 . If sunlight strikes a perfect absorber, what pressure does it exert? How about a perfect reflector? What fraction of atmospheric pressure does this amount to?

Suppose you send an incident wave of specified shape, g1(z-v1t), down string number 1. It gives rise to a reflected wave, hR(z+v1t), and a transmitted wave, gT(z+v2t). By imposing the boundary conditions 9.26 and 9.27, find hRand gT.

Suppose

E(r,θ,ϕ,t)=Asinθr[cos(krωt)(1/kr)sin(krωt)]ϕ^

(This is, incidentally, the simplest possible spherical wave. For notational convenience, let role="math" localid="1658817164296" (krωt)u in your calculations.)

(a) Show that E obeys all four of Maxwell's equations, in vacuum, and find the associated magnetic field.

(b) Calculate the Poynting vector. Average S over a full cycle to get the intensity vector I. (Does it point in the expected direction? Does it fall off liker2, as it should?)

(c) Integrate role="math" localid="1658817283737" Ida over a spherical surface to determine the total power radiated. [Answer: 4πA2/3μ0c ]

See all solutions

Recommended explanations on Physics Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free