Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

Consider a particle of charge q and mass m, free to move in the xyplane in response to an electromagnetic wave propagating in the z direction (Eq. 9.48—might as well set δ=0)).

(a) Ignoring the magnetic force, find the velocity of the particle, as a function of time. (Assume the average velocity is zero.)

(b) Now calculate the resulting magnetic force on the particle.

(c) Show that the (time) average magnetic force is zero.

The problem with this naive model for the pressure of light is that the velocity is 90°out of phase with the fields. For energy to be absorbed there’s got to be some resistance to the motion of the charges. Suppose we include a force of the form ymv, for some damping constant y.

(d) Repeat part (a) (ignore the exponentially damped transient). Repeat part (b), and find the average magnetic force on the particle.

Short Answer

Expert verified

Answer

(a) The velocity of the particle is v=-qEmωsinkz-ωtx.

(b) The resulting magnetic force on the particle is Fm=-q2E02mωcsinkz-ωtcoskz-ωtz^.

(c) It is proved that the (time) average magnetic force is zero.

(d) The velocity of the particle is role="math" localid="1655719609207" v=qE0mω2+y2coskz-ωtx^, the resulting magnetic force on the particle is Fm=qE0mcω2+y2coskz-ω+θcoskz-ωtz^and the (time) average magnetic force is Fmavg=πγq2E02mωcω2+γ2z^.

Step by step solution

01

Expression for the electric field, magnetic field, and frequency:


Write the expression for the electric field.

F(ωtz,xt)=E0cos(kz-)^ …… (1)

Here,tis the time,is the peak electric field,kis the wave number andis the angular frequency.

Write the expression for the magnetic field.

P(ωtz,yt)=1cE0cos(kz-)^ …… (2)

Here,cis the speed of light.

Write the expression for the frequency.

ω=ck …… (3)

02

Determine the velocity of a particle as a function of time:

(a)

Write the expression for an electric force.

F0=qE

Substitute E=E0coskz-ωtx^in the above expression.

F0=qE0coskz-ωtx^F0=maF0=mdvdt

Write the equation for the velocity.

role="math" localid="1655720398237" v=qE0mx^coskz-ωtdt=-qE0mωsinkz-wtx^+C

Here, C=0. Hence, the above equation becomes,

role="math" localid="1655720477833" v=-qE0mωsinkz-ωtx^

Therefore, the velocity of the particle is v=-qE0mωsinkz-ωtx^.

03

Determine the resulting magnetic force on the particle:

(b)

Write the expression for the magnetic force.

Fm=qv×B

Here,qis the charge.

Substitute v=-qE0mωsinkz-ωtx^, and B=1cE0coskz-ωty^ in the above expression.

Fm=q-qE0mωE0csinkz-ωtcoskz-ωtx^×y^Fm=-q2E02mωcsinkz-wtcoskz-ωtz^ …… (4)

Therefore, the resulting magnetic force on the particle is Fm=-q2E02mωcsinkz-wtcoskz-ωtz^.

04

Determine the (time) average magnetic force:

(c)

Integrate equation (4) to find the average magnetic force.

Fmavg=-q2E02mωcz^0Tsinkz-ωtcoskz-ωωtdt

Here, T=2πωis the period.

On further solving, the above equation becomes,

Fmavg=-q2E02mωcz^-12ωsin2kz-ωt0T=q2E02mωcz^-12ωsin2kz-2π-sin2kz=q2E02mωcz^-12ωsin2kz-sin2kz=0

Therefore, it is proved that the (time) average magnetic force is zero.

05

Determine the average magnetic force on the particle:

(d)

Adding in the damping terms, form the required equation.

F=qE-γmvmdvdt=qE0coskz-ωtx^-γmvdvdt+γv=qE0mcoskz-ωtx^ …… (5)

The steady state solution has the following form.

v=Acoskz-ωt+θx^ …… (6)

Find the derivative of the above equation.

dvdt=Aωsinkz-ωt+θx^

Substitute dvdt=Aωsinkz-ωt+θx^and v=Acoskz-ωt+θx^in equation (5).

Aωsinkz-ωt+θx^+γAcoskz-ωt+θx^=qE0mcoskz-ωtx^Aωsinkz-ωt+θx^+γAcoskz-ω+θx^=qE0mcosθcoskz-ωt+θ+sinθsinkz-ωt+θ

Equate the sine terms.

AωqE0msinθ …… (7)

Equate the cosine terms.

AωqE0mcosθ …… (8)

Square and add the equation (7) and (8).

A2ω2+γ2=qE0m2A=qE0mω2+γ2

Substitute A=qE0mω2+γ2in equation (6).

role="math" localid="1655722215918" v=qE0mω2+γ2coskz-ωt+θx^

Hence, the magnetic force will be,

Fm=qE0mcω2+γ2coskz-ωt+θcoskz-ωtz^

Write the equation to calculate the time average.

coskz-ωt+θ=cosθcoskz-ωt-sinθsinkz-ωt.

It is known that the average of coskz-ωtsinkz-ωtis zero, so, the average magnetic force equation becomes,

Fmavg=q2E02mcω2+γ2z^cosθ0Tcos2kz-ωtdt

Substitute cosθ=γω2+γ2in the above equation.

Fmavg=q2E02mcω2+γ2z^γω2+γ2T2Fmavg=q2E02mcω2+γ2z^γω2+γ2πωFmavg=πγq2E02mωcω2+γ2z^

Therefore, the velocity of the particle is v=qE0mω2+γ2coskz-ωt+θcoskz-ωtz^, the resulting magnetic force on the particle is Fm=qE0mcω2+γ2coskz-ωt+θcoskz-ωtz^and the (time) average magnetic force is Fmavg=πγq2E02mωcω2+γ2z^.

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

[The naive explanation for the pressure of light offered in section 9.2.3 has its flaws, as you discovered if you worked Problem 9.11. Here's another account, due originally to Planck.] A plane wave travelling through vaccum in the z direction encounters a perfect conductor occupying the region z0, and reflects back:

E(z,t)=E0[coskz-ωt-coskz+ωt]x^,(z>0)

  1. Find the accompanying magnetic field (in the region (z>0))
  2. Assuming B=0inside the conductor find the current K on the surface z=0, by invoking the appropriate boundary condition.
  3. Find the magnetic force per unit area on the surface, and compare its time average with the expected radiation pressure (Eq.9.64).

Suppose

E(r,θ,ϕ,t)=Asinθr[cos(kr-ωt)-1krsin(kr-ωt)]ϕ

(This is, incidentally, the simplest possible spherical wave. For notational convenience, let(kr-ωt)uin your calculations.)

(a) Show that Eobeys all four of Maxwell's equations, in vacuum, and find the associated magnetic field.

(b) Calculate the Poynting vector. Average S over a full cycle to get the intensity vector . (Does it point in the expected direction? Does it fall off like r-2, as it should?)

(c) Integrate over a spherical surface to determine the total power radiated. [Answer:4πA2/3μ0c]

(a) Formulate an appropriate boundary condition, to replace Eq. 9.27, for the case of two strings under tension T joined by a knot of mass m.

(b) Find the amplitude and phase of the reflected and transmitted waves for the case where the knot has a mass m and the second string is massless.

Light of (angular) frequency w passes from medium , through a slab (thickness d) of medium 2, and into medium 3(for instance, from water through glass into air, as in Fig. 9.27). Show that the transmission coefficient for normal incidence is given by

localid="1658907323874" T1=14n1n3[(n1+n3)2+(n12n22)(n32n22)n22sin2(n2ωdc)]

Find all elements of the Maxwell stress tensor for a monochromatic plane wave traveling in the z direction and linearly polarized in the x direction (Eq. 9.48). Does your answer make sense? (Remember that -Trepresents the momentum flux density.) How is the momentum flux density related to the energy density, in this case?

See all solutions

Recommended explanations on Physics Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free