Chapter 9: Q5P (page 391) URL copied to clipboard! Now share some education! Suppose you send an incident wave of specified shape, g1(z-v1t), down string number 1. It gives rise to a reflected wave, hR(z+v1t), and a transmitted wave, gT(z+v2t). By imposing the boundary conditions 9.26 and 9.27, find hRand gT. Short Answer Expert verified The shape of the reflected wave (hR)is hRu=v2-v1v2+v1g1(-v1t)+k', and the shape of the transmitted wave (gT)is gTu=2v2v1+v2gIv1v2u+k'. Step by step solution 01 Expression for the transmitted wave and impose boundary conditions: Write the expression for the transmitted wave.gt(z-v2t)=g1(z-v1t)+hR(z-v1t) …. (1)Here, g1(z-v1t)is the shape of the incident wave and is the shape of the reflected wave.Consider first equation for the boundary condition.f(0-1,t)=f(0+,t) ….. (1)Consider the first equation for the boundary condition.∂f∂z0-=∂f∂z0+ ….. (2) 02 Determine the shape of the transmitted wave: Apply the boundary condition from equation (2).gT(0-v2t)=g1(0-v1t)+hR(0+v1t)gT(-v2t)=g1(-v1t)+hR(v1t)......(4)gT(0-v2t)=g1(0-v1t)+hR(0+v1t)gT(-v2t)=g1(-v1t)+hR(v1t)......(4)Apply the boundary condition from equation (4).-1v1∂gT(-v1t)∂t+1v1∂hR(v1t)∂t=-1v2∂gT(-v2t)∂t-∂g1(-v1t)∂t+∂hR(v1t)∂t=v1v2∂gT(-v2t)∂t∂g1(-v1t)∂t-∂hR(v1t)∂t=v1v2∂gT(-v2t)∂tIntegrate on both sides,g1(-v1t)-hR(v,t)=v1v2gT(-v2t)+k …… (5)Add equations (4) and (5).gT-v2t+v1v2gT(-v2t)+k=g1(-v1t)+hR(v1t)+gT(-v1t)-hR(-v1t)gT-v2t1+v1v2+k=gl(-v1t)+gl(-v1t)2gl(-v1t)=gT(-v2t)[v2+v1v2]+kgT(-v2t)=(2v2v2+v1)gl(-v1t)+klHere, k1=-k(v2v1+v2).Let(z-v1t)=(z-v2t)=(z-v1t)=uSubstitute the values in equation (1).gTu=2v2v1+v2glv1v2u+k1 03 Determine the shape of the reflected wave: Multiply equation (4) withv1v2.role="math" localid="1657700056261" v1v2gT-v2t=v1v2gl-v1t=v1v2hTv1tSubtract equation (5) from equation (6).v1v2gT-v2t+k-v1v2gT-v2t=gT-v1t-hRv1t-v1v2gl-v1t-v1v2hRv1tgl(-v1T)-v1v2gl-v1t-hR(-v1T)-v1v2hR-v1t=k1-v1v2gl-v1t-1+v1v2hR-v1t=khRu=v2-v1v1+v2gl-v1t+klTherefore, the shape of the reflected wave hRis hRu=v2-v1v1+v2gl-v1t+kl, and the shape of the transmitted wave gTis gTu=2v2v1+v2glv1v2u+kl. Unlock Step-by-Step Solutions & Ace Your Exams! Full Textbook Solutions Get detailed explanations and key concepts Unlimited Al creation Al flashcards, explanations, exams and more... Ads-free access To over 500 millions flashcards Money-back guarantee We refund you if you fail your exam. Start your free trial Over 30 million students worldwide already upgrade their learning with Vaia!