Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

In the discussion of motional emf (Sect. 7.1.3) Iassumed that the wire loop (Fig. 7.10) has a resistance R; the current generated is then I=vBhR. But what if the wire is made out of perfectly conducting material, so that Ris zero? In that case, the current is limited only by the back emf associated with the self-inductanceL of the loop (which would ordinarily be negligible in comparison with IR). Show that in this regime the loop (massm ) executes simple harmonic motion, and find its frequency. [Answer: ω=Bh/mL].

Short Answer

Expert verified

The expression for the frequency is BhmL.

Step by step solution

01

Write the given data from the question.

The length of the loop is l.

The resistance of the loop is R.

The self-inductance is L.

The mass of the loop is m.

The generated current in the loop is I=vBhR.

02

Determine the formulas to calculate the frequency.

The expression to calculate the back emf is given as follows.

ε=Bhv ……. (1)

The expression to calculate the back emf associated with the self-inductance is given as follows.

ε=-LdIdt ……. (2)

The expression for the force on the wire is given as follows.

F=Blh …….. (3)

The expression for the force on the wire in terms of mass is given as follows.

F=mdvdt …….. (4)

03

Calculate the frequency of the simple harmonic.

Equate the forces on the wire.

From the equation (3) and (4).

mdvdt=Blhdvdt=Blhm

Differentiate the above equation with respect to t.

d2vdt=BlmdIdt ……… (5)

Equate the equation (1) and (2).

LdIdt=BhvdIdt=BhvL

Substitute BhvLfor dIdtinto equation (5).

d2vdt=Blm(BhvL)d2vdt=B2lhvmL

From the above equation,

ω2=B2h2mLω=B2h2mLω=BhmL

Hence the expression for the frequency is BhmL.

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

A thin uniform donut, carrying charge Q and mass M, rotates about its axis as shown in Fig. 5.64.

(a) Find the ratio of its magnetic dipole moment to its angular momentum. This is called the gyromagnetic ratio (or magnetomechanical ratio).

(b) What is the gyromagnetic ratio for a uniform spinning sphere?[This requires no new calculation; simply decompose the sphere into infinitesimal rings, and apply the result of part (a).]

(c) According to quantum mechanics, the angular momentum of a spinning electron is 12 , where is Planck's constant. What, then, is the electron's magnetic dipole moment, in localid="1657713870556" Am2 ? [This semi classical value is actually off by a factor of almost exactly 2. Dirac's relativistic electron theory got the 2 right, and Feynman, Schwinger, and Tomonaga later calculated tiny further corrections. The determination of the electron's magnetic dipole moment remains the finest achievement of quantum electrodynamics, and exhibits perhaps the most stunningly precise agreement between theory and experiment in all of physics. Incidentally, the quantity(localid="1657713972487" (e/2m), where e is the charge of the electron and m is its mass, is called the Bohr magneton.]

Two concentric metal spherical shells, of radius a and b, respectively, are separated by weakly conducting material of conductivityσ(Fig. 7 .4a).

(a) If they are maintained at a potential difference V, what current flows from one to the other?

(b) What is the resistance between the shells?

(c) Notice that if b>>a the outer radius (b) is irrelevant. How do you account for that? Exploit this observation to determine the current flowing between two metal spheres, each of radius a, immersed deep in the sea and held quite far apart (Fig. 7 .4b ), if the potential difference between them is V. (This arrangement can be used to measure the conductivity of sea water.)

Question: An infinite wire carrying a constant current in the direction is moving in the direction at a constant speed . Find the electric field, in the quasistatic approximation, at the instant the wire coincides with the axis (Fig. 7.54).

A long solenoid with radius a and n turns per unit length carries a time-dependent currentl(t) in theϕ^ direction. Find the electric field (magnitude and direction) at a distance s from the axis (both inside and outside the solenoid), in the quasistatic approximation.

Try to compute the self-inductance of the "hairpin" loop shown in Fig. 7.38. (Neglect the contribution from the ends; most of the flux comes from the long straight section.) You'll run into a snag that is characteristic of many self-inductance calculations. To get a definite answer, assume the wire has a tiny radius, and ignore any flux through the wire itself.

See all solutions

Recommended explanations on Physics Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free