Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

Question: A fat wire, radius a, carries a constant current I , uniformly distributed over its cross section. A narrow gap in the wire, of width w << a, forms a parallel-plate capacitor, as shown in Fig. 7.45. Find the magnetic field in the gap, at a distance s < a from the axis.

Short Answer

Expert verified

Answer

The magnetic field in the gap is B=μ0Is2πa2.

Step by step solution

01

Write the given data from the question.

The radius of the wire is a .

The constant current is the wire is I.

The gap between the wire is w<<a.

02

  Step 2: Determine the formulas to calculate the magnetic field in the gap. 

The expression for the current density is given as follows.

J=IA

Here, A is the area of the wire.

03

Calculate the magnetic field in the gap.  

Consider the figure of the wire with the gap.

Calculate the current density.

Substituteπa2 for A into equation (1).

Jd=Iπa2z^

The expression for the magnetic field from the Ampere’s law is given by,

B·dl=μ0IdencB2πs=μ0IdencB=μ0Idenc2πs

Substitute Jdπs2 for Idencinto above equation.

B=μ0Jdπs22πsB=μ0Jds2

SubstituteIπa2forJd into above equation.

B=μ0Iπa2s2B=μ0Is2πa2

Hence the magnetic field in the gap isB=μ0Is2πa2.

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

A transformer (Prob. 7.57) takes an input AC voltage of amplitude V1, and delivers an output voltage of amplitude V2, which is determined by the turns ratio (V2V1=N2N1). If N2>N1, the output voltage is greater than the input voltage. Why doesn't this violate conservation of energy? Answer: Power is the product of voltage and current; if the voltage goes up, the current must come down. The purpose of this problem is to see exactly how this works out, in a simplified model.

(a) In an ideal transformer, the same flux passes through all turns of the primary and of the secondary. Show that in this case M2=L1L2, where Mis the mutual inductance of the coils, and L1,L2, are their individual self-inductances.

(b) Suppose the primary is driven with AC voltage Vin=V1cos(ωt), and the secondary is connected to a resistor, R. Show that the two currents satisfy the relations

L1=dl1dt+Mdl2dt=V1cos(ωt);L1=dl2dt+Mdl1dt=-I2R.

(c) Using the result in (a), solve these equations for localid="1658292112247" l1(t)and l2(t). (Assume l2has no DC component.)

(d) Show that the output voltage (Vout=l2R)divided by the input voltage (Vin)is equal to the turns ratio: VoutVin=N2N1.

(e) Calculate the input power localid="1658292395855" (Pin=Vinl1)and the output power (Pout=Voutl2), and show that their averages over a full cycle are equal.

A circular wire loop (radiusr, resistanceR) encloses a region of uniform magnetic field,B, perpendicular to its plane. The field (occupying the shaded region in Fig. 7.56) increases linearly with timeB=αt. An ideal voltmeter (infinite internal resistance) is connected between pointsPandQ.

(a) What is the current in the loop?

(b) What does the voltmeter read? [Answer: αr2/2]

A small loop of wire (radius a) is held a distance z above the center of a large loop (radius b ), as shown in Fig. 7.37. The planes of the two loops are parallel, and perpendicular to the common axis.

(a) Suppose current I flows in the big loop. Find the flux through the little loop. (The little loop is so small that you may consider the field of the big loop to be essentially constant.)

(b) Suppose current I flows in the little loop. Find the flux through the big loop. (The little loop is so small that you may treat it as a magnetic dipole.)

(c) Find the mutual inductances, and confirm that M12=M21 ·

A square loop of wire (side a) lies on a table, a distance s from a very long straight wire, which carries a current I, as shown in Fig. 7.18.

(a) Find the flux of B through the loop.

(b) If someone now pulls the loop directly away from the wire, at speed, V what emf is generated? In what direction (clockwise or counter clockwise) does the current flow?

(c) What if the loop is pulled to the right at speed V ?

(a) Show that Maxwell's equations with magnetic charge (Eq. 7.44) are invariant under the duality transformation

E'=Ecosα+cBsinα,cB'=cBcosα-Esinα,cq'e=cqecosα+qmsinα,q'm=qmcosα-cqesinα,

Where c1/ε0μ0and αis an arbitrary rotation angle in “E/B-space.” Charge and current densities transform in the same way as qeand qm. [This means, in particular, that if you know the fields produced by a configuration of electric charge, you can immediately (using α=90°) write down the fields produced by the corresponding arrangement of magnetic charge.]

(b) Show that the force law (Prob. 7.38)

F=qe(E+V×B)+qm(B-1c2V×E)

is also invariant under the duality transformation.

See all solutions

Recommended explanations on Physics Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free