Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

Where is Btnonzero in Figure 7.21(b)? Exploit the analogy between Faraday's law and Ampere's law to sketch (qualitatively) the electric field.

Short Answer

Expert verified

The term Btis nonzero along the left and right edges of the shaded rectangle.

Step by step solution

01

Define Faraday's Law.

Faraday's law is the most fundamental law in Electromagnetic induction, which depicts that whenever a conductor is placed in the magnetic field, which is variable in nature, then an EMF will be induced in the conductor if the conductor has been short circuited, then current will flow in the conductor.

02

Determine the nonzero position of ∂B∂t

The figure concludes that the (inward) flux through the strip on the left isincreasing. On the contrary, the (inward) flux passing through the strip on the right decreases, similar to the two current sheets under Ampere's circuital law.

Now, withBE andμ0Iencdt from equation 7.19, the significance of the negative sign is that the current has been flown out to one on the left, so its field is counter clockwise, and the one on the right is like a current flowing in, so it field is clockwise.

The diagram of the above description is shown below:

Therefore, the termBt is nonzero along the left and right edges of the shaded rectangle.

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

Suppose

E(r,t)=14πε0qr2θ(rυt)r^; B(r,t)=0

(The theta function is defined in Prob. 1.46b). Show that these fields satisfy all of Maxwell's equations, and determine ρ and J. Describe the physical situation that gives rise to these fields.

A metal bar of mass m slides frictionlessly on two parallel conducting rails a distance l apart (Fig. 7 .17). A resistor R is connected across the rails, and a uniform magnetic field B, pointing into the page, fills the entire region.


(a) If the bar moves to the right at speed V, what is the current in the resistor? In what direction does it flow?

(b) What is the magnetic force on the bar? In what direction?

(c) If the bar starts out with speedV0at time t=0, and is left to slide, what is its speed at a later time t?

(d) The initial kinetic energy of the bar was, of course,12mv2Check that the energy delivered to the resistor is exactly 12mv2.

(a) Two metal objects are embedded in weakly conducting material of conductivity σ(Fig. 7 .6). Show that the resistance between them is related to the capacitance of the arrangement by

R=0σC

(b) Suppose you connected a battery between 1 and 2, and charged them up to a potential differenceV0. If you then disconnect the battery, the charge will gradually leak off. Show thatV(t)=V0e-t/r, and find the time constant,τ, in terms of 0and .σ

Sea water at frequency v=4×108Hzhas permittivitylocalid="1657532076763" =810, permeabilityμ=μ0, and resistivityρ=0.23Ω.m. What is the ratio of conduction current to displacement current? [Hint: Consider a parallel-plate capacitor immersed in sea water and driven by a voltageV0cos(2πvt) .]

A long solenoid with radius a and n turns per unit length carries a time-dependent currentl(t) in theϕ^ direction. Find the electric field (magnitude and direction) at a distance s from the axis (both inside and outside the solenoid), in the quasistatic approximation.

See all solutions

Recommended explanations on Physics Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free