Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

A rectangular loop of wire is situated so that one end (height h) is between the plates of a parallel-plate capacitor (Fig. 7.9), oriented parallel to the field E. The other end is way outside, where the field is essentially zero. What is the emf in this loop? If the total resistance is R, what current flows? Explain. [Warning: This is a trick question, so be careful; if you have invented a perpetual motion machine, there's probably something wrong with it.]


Short Answer

Expert verified

The emf inside the current is 0V and current is 0A.

Step by step solution

01

Write the given data from the question:

The electric field is E.

Th total resistance is R.

The height between the plates is h.

02

Calculate the emf in the loop and current in the loop.

The emf of the loop is given by,

ε=E-dI …… (1)

For all the electrostatic field, the emf is equal to zero.

Therefore,

E.dI=0

The electric field due to the length of the loop parallel to the capacitor plate is zero because the dIis perpendicular to the electric field. The electric field outside the capacitor is zero. Therefore, the emf due to the wire containing the resistance is zero. The electric field is existed only because of the wire inside the capacitor and parallel to the plates.

The field inside the conductor is E=σε0

Substitute the σε0for and for into equation (1).

ε=σε0h

The electric field is not constant inside the capacitor, and due to fringing, not all the field lines are perpendicular to the field; therefore, the electrostatic field inside the capacitor becomes zero. Therefore, the emf of the loop is zero.

ε=0V

The current in the loop is given by,

I=εR

Substitute 0V for εinto above equation.

I=0RI=0A

Hence, the emf inside the current is 0V and current is 0A.

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

As a lecture demonstration a short cylindrical bar magnet is dropped down a vertical aluminum pipe of slightly larger diameter, about 2 meters long. It takes several seconds to emerge at the bottom, whereas an otherwise identical piece of unmagnetized iron makes the trip in a fraction of a second. Explain why the magnet falls more slowly.

An alternating current I(t)=I0cos(ωt) (amplitude 0.5 A, frequency ) flows down a straight wire, which runs along the axis of a toroidal coil with rectangular cross section (inner radius 1cm , outer radius 2 cm , height 1 cm, 1000 turns). The coil is connected to a 500Ω resistor.

(a) In the quasistatic approximation, what emf is induced in the toroid? Find the current, IR(t), in the resistor.

(b) Calculate the back emf in the coil, due to the current IR(t) . What is the ratio of the amplitudes of this back emf and the "direct" emf in (a)?

Sea water at frequency v=4×108Hzhas permittivitylocalid="1657532076763" =810, permeabilityμ=μ0, and resistivityρ=0.23Ω.m. What is the ratio of conduction current to displacement current? [Hint: Consider a parallel-plate capacitor immersed in sea water and driven by a voltageV0cos(2πvt) .]

Try to compute the self-inductance of the "hairpin" loop shown in Fig. 7.38. (Neglect the contribution from the ends; most of the flux comes from the long straight section.) You'll run into a snag that is characteristic of many self-inductance calculations. To get a definite answer, assume the wire has a tiny radius, and ignore any flux through the wire itself.

In the discussion of motional emf (Sect. 7.1.3) Iassumed that the wire loop (Fig. 7.10) has a resistance R; the current generated is then I=vBhR. But what if the wire is made out of perfectly conducting material, so that Ris zero? In that case, the current is limited only by the back emf associated with the self-inductanceL of the loop (which would ordinarily be negligible in comparison with IR). Show that in this regime the loop (massm ) executes simple harmonic motion, and find its frequency. [Answer: ω=Bh/mL].

See all solutions

Recommended explanations on Physics Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free