Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

A battery of emf εand internal resistance r is hooked up to a variable "load" resistance,R . If you want to deliver the maximum possible power to the load, what resistance R should you choose? (You can't change e and R , of course.)

Short Answer

Expert verified

The maximum power is delivered to the load when the internal resistance of the battery is equal to the load resistance.

Step by step solution

01

Write the given data from the question.

The emf of the battery isε .

Internal resistance of the battery isr .

Load resistance is R .

02

Determine the value of the resistance to deliver the maximum power to load.

Consider the circuit diagram shown below.

The current in the above circuit is given by,

i=ER+r

The power deliver to the load is given by,

P=i2R

Substitute ER+rfor into above equation.

p=ER+r2R …… (1)

The maximum power can be delivered to the load under the conditiondPdR=0.

Now differentiate the equation (1) with respect to R,

dPdR=R+r2E2+E2R×2R×rR×r4dPdR=R+r2E2+2E2R×rR×r4

Substitute the above equation equal to zero.

dPdR=0R+r2E2-2E2R4R+rR+r=0R+rE2R+r-2R=0R+rE2r-R=0

Solve further as,

r=R=0R=r

Hence the maximum power is delivered to the load when the internal resistance of the battery is equal to the load resistance.

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

Question; An atomic electron (charge q ) circles about the nucleus (charge Q) in an orbit of radius r ; the centripetal acceleration is provided, of course, by the Coulomb attraction of opposite charges. Now a small magnetic field dB is slowly turned on, perpendicular to the plane of the orbit. Show that the increase in kinetic energy, dT , imparted by the induced electric field, is just right to sustain circular motion at the same radius r. (That's why, in my discussion of diamagnetism, I assumed the radius is fixed. See Sect. 6.1.3 and the references cited there.)

A rectangular loop of wire is situated so that one end (height h) is between the plates of a parallel-plate capacitor (Fig. 7.9), oriented parallel to the field E. The other end is way outside, where the field is essentially zero. What is the emf in this loop? If the total resistance is R, what current flows? Explain. [Warning: This is a trick question, so be careful; if you have invented a perpetual motion machine, there's probably something wrong with it.]


Sea water at frequency v=4×108Hzhas permittivitylocalid="1657532076763" =810, permeabilityμ=μ0, and resistivityρ=0.23Ω.m. What is the ratio of conduction current to displacement current? [Hint: Consider a parallel-plate capacitor immersed in sea water and driven by a voltageV0cos(2πvt) .]

Suppose

E(r,t)=14πε0qr2θ(rυt)r^; B(r,t)=0

(The theta function is defined in Prob. 1.46b). Show that these fields satisfy all of Maxwell's equations, and determine ρ and J. Describe the physical situation that gives rise to these fields.

A circular wire loop (radius r , resistance R ) encloses a region of uniform magnetic field, B , perpendicular to its plane. The field (occupying the shaded region in Fig. 7.56) increases linearly with time(B=t)An ideal voltmeter (infinite internal resistance) is connected between points P and Q.

(a) What is the current in the loop?

(b) What does the voltmeter read? Answer:[r2/2]

See all solutions

Recommended explanations on Physics Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free