Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

Two coils are wrapped around a cylindrical form in such a way that the same flux passes through every turn of both coils. (In practice this is achieved by inserting an iron core through the cylinder; this has the effect of concentrating the flux.) The primary coil hasN1turns and the secondary hasN2(Fig. 7.57). If the current in the primary is changing, show that the emf in the secondary is given by

ε2ε1=N2N1(7.67)

whereε1is the (back) emf of the primary. [This is a primitive transformer-a device for raising or lowering the emf of an alternating current source. By choosing the appropriate number of turns, any desired secondary emf can be obtained. If you think this violates the conservation of energy, study Prob. 7.58.]

Short Answer

Expert verified

The expressionε2ε1=N2N1is verified.

Step by step solution

01

Given information

The number of turns in the primary coils are,N1.

The number of turns in the secondary coils are,N2.

The current passing through the primary coil is,I .

02

Magnetic flux on coils

When the magnitude of the current flowing in the coil varies, a magnetic flux is generated and a certain amount of emf is also induced in the coil.

If the number of turns in the coil are increased then the magnetic flux produced in the coil also increases.

03

Determine the magnetic flux on both coils

When the current passes through a single loop of primary coil, the magnetic field is generated and the change in current value creates the magnetic fluxΦ.

Then, the formula for the magnetic flux on the primary coil is given by,

localid="1658291056948" Φ1=N1Φ

And, the formula for the magnetic flux on the secondary coil is given by,

localid="1658291081661" Φ2=N2Φ

04

Determine emf induced in the primary coil

The formula for the emf induced in the primary coil is given by,

ε1=-dΦ1dtε1=-dN1Φdtε1=-N1dΦdt........(1)

05

Determine emf induced in the secondary coil

The formula for the emf induced in the secondary coil is given by,

ε2=-dΦ2dtε2=-dN2Φdtε2=-N2dΦdt.......(2)

By dividing equation (2) by equation (1),

ε2ε1=-N2dΦdt-N1dΦdtε2ε1=N2N1

Hence proved.

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

Problem 7.61 The magnetic field of an infinite straight wire carrying a steady current I can be obtained from the displacement current term in the Ampere/Maxwell law, as follows: Picture the current as consisting of a uniform line charge λmoving along the z axis at speed v (so that I=λv), with a tiny gap of length E , which reaches the origin at time t=0. In the next instant (up to t=E/v) there is no real current passing through a circular Amperian loop in the xy plane, but there is a displacement current, due to the "missing" charge in the gap.

(a) Use Coulomb's law to calculate the z component of the electric field, for points in the xy plane a distances from the origin, due to a segment of wire with uniform density -λ . extending from toz1=vt-Etoz2=vt .

(b) Determine the flux of this electric field through a circle of radius a in the xy plane.

(c) Find the displacement current through this circle. Show thatId is equal to I , in the limit as the gap width (E)goes to zero.35

An infinite number of different surfaces can be fit to a given boundary line, and yet, in defining the magnetic flux through a loop, ϕ=B.da da, I never specified the particular surface to be used. Justify this apparent oversight.

A circular wire loop (radius r , resistance R ) encloses a region of uniform magnetic field, B , perpendicular to its plane. The field (occupying the shaded region in Fig. 7.56) increases linearly with time(B=t)An ideal voltmeter (infinite internal resistance) is connected between points P and Q.

(a) What is the current in the loop?

(b) What does the voltmeter read? Answer:[r2/2]

Refer to Prob. 7.16, to which the correct answer was

E(s,t)=μ0I0ω2ττsin(ωt)In(as)z^

(a) Find the displacement current density Jd·

(b) Integrate it to get the total displacement current,

Id=Jd.da

Compare Id and I. (What's their ratio?) If the outer cylinder were, say, 2 mm in diameter, how high would the frequency have to be, forId to be 1% of I ? [This problem is designed to indicate why Faraday never discovered displacement currents, and why it is ordinarily safe to ignore them unless the frequency is extremely high.]

A small loop of wire (radius a) is held a distance z above the center of a large loop (radius b ), as shown in Fig. 7.37. The planes of the two loops are parallel, and perpendicular to the common axis.

(a) Suppose current I flows in the big loop. Find the flux through the little loop. (The little loop is so small that you may consider the field of the big loop to be essentially constant.)

(b) Suppose current I flows in the little loop. Find the flux through the big loop. (The little loop is so small that you may treat it as a magnetic dipole.)

(c) Find the mutual inductances, and confirm that M12=M21 ·

See all solutions

Recommended explanations on Physics Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free