Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

A circular wire loop (radiusr, resistanceR) encloses a region of uniform magnetic field,B, perpendicular to its plane. The field (occupying the shaded region in Fig. 7.56) increases linearly with timeB=αt. An ideal voltmeter (infinite internal resistance) is connected between pointsPandQ.

(a) What is the current in the loop?

(b) What does the voltmeter read? [Answer: αr2/2]

Short Answer

Expert verified

(a)The current in the loop isI=παr2R .

(b) The voltmeter reading isαr22 .

Step by step solution

01

Given information

The radius of circular wire loop is,.

The resistance of circular wire loop is, .

The uniform magnetic field inside the wire loop is, .

The relation between the magnetic field and time is, .

02

Magnetic flux

The magnetic flux inside the wire loop having magnetic field and radius is given by,

03

The current in the loop

(b)

The formula for the emf generated in the loop due to magnetic flux is given by,

Solve further as:

The negative sign indicates the emf value is decreasing.

Also, the emf using Ohm’s law,

Then equating both values,

Hence, the current in the loop is .

04

Determine the voltmeter reading value

(b)

Assume a small elemental region of radius inside the given inside the given region between points P and Q.

For a circle of radius , applying Faraday’s law for a closed area, the formula for the measured emf is given by,

In polar form,

Along the line from P to Q,

and ,

Then the voltage reading between points P and Q can be calculated as,

Hence, the voltmeter reading is .

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

(a) Show that Maxwell's equations with magnetic charge (Eq. 7.44) are invariant under the duality transformation

E'=Ecosα+cBsinα,cB'=cBcosα-Esinα,cq'e=cqecosα+qmsinα,q'm=qmcosα-cqesinα,

Where c1/ε0μ0and αis an arbitrary rotation angle in “E/B-space.” Charge and current densities transform in the same way as qeand qm. [This means, in particular, that if you know the fields produced by a configuration of electric charge, you can immediately (using α=90°) write down the fields produced by the corresponding arrangement of magnetic charge.]

(b) Show that the force law (Prob. 7.38)

F=qe(E+V×B)+qm(B-1c2V×E)

is also invariant under the duality transformation.

A rectangular loop of wire is situated so that one end (height h) is between the plates of a parallel-plate capacitor (Fig. 7.9), oriented parallel to the field E. The other end is way outside, where the field is essentially zero. What is the emf in this loop? If the total resistance is R, what current flows? Explain. [Warning: This is a trick question, so be careful; if you have invented a perpetual motion machine, there's probably something wrong with it.]


Question:Calculate the energy stored in the toroidal coil of Ex. 7.11, by applying Eq. 7.35. Use the answer to check Eq. 7.28.

Problem 7.61 The magnetic field of an infinite straight wire carrying a steady current I can be obtained from the displacement current term in the Ampere/Maxwell law, as follows: Picture the current as consisting of a uniform line charge λmoving along the z axis at speed v (so that I=λv), with a tiny gap of length E , which reaches the origin at time t=0. In the next instant (up to t=E/v) there is no real current passing through a circular Amperian loop in the xy plane, but there is a displacement current, due to the "missing" charge in the gap.

(a) Use Coulomb's law to calculate the z component of the electric field, for points in the xy plane a distances from the origin, due to a segment of wire with uniform density -λ . extending from toz1=vt-Etoz2=vt .

(b) Determine the flux of this electric field through a circle of radius a in the xy plane.

(c) Find the displacement current through this circle. Show thatId is equal to I , in the limit as the gap width (E)goes to zero.35

An infinite cylinder of radius R carries a uniform surface charge σ. We propose to set it spinning about its axis, at a final angular velocity ω. How much work will this take, per unit length? Do it two ways, and compare your answers:

(a) Find the magnetic field and the induced electric field (in the quasistatic approximation), inside and outside the cylinder, in terms of ω,ω,ands(the distance from the axis). Calculate the torque you must exert, and from that obtain the work done per unit length(W=Ndϕ).

(b) Use Eq. 7.35 to determine the energy stored in the resulting magnetic field.

See all solutions

Recommended explanations on Physics Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free