Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

As a lecture demonstration a short cylindrical bar magnet is dropped down a vertical aluminum pipe of slightly larger diameter, about 2 meters long. It takes several seconds to emerge at the bottom, whereas an otherwise identical piece of unmagnetized iron makes the trip in a fraction of a second. Explain why the magnet falls more slowly.

Short Answer

Expert verified

The attraction force act between the magnet and ring of pipe. Therefore, the magnet falls slowly.

Step by step solution

01

Determine the currents in the falling magnet and ring of pipe.

Let’s consider the current is flowing into the falling magnet in the counter clockwise direction; then, according to the flaming’s rule, the magnetic field due to the magnet is in the upward direction.

Now assume the ring of pipe below the falling magnet, and the magnetic flux into the ring increases as the magnate approaches the pipe. Therefore, the induced current into the pipe ring is clockwise.

02

Determine the reason of falling the magnet slowly.

When the magnet falls above the pipe, the current in the magnet is in the counter clockwise direction, the induced current into the pipe is in a clockwise direction, and the opposite current repels each other.

When the magnet falls below the pipe, the current's directions become in the same direction, which means the attraction force act between them, and the current attracts each other. Therefore, the magnet falls more slowly.

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

A long cylindrical shell of radius Rcarries a uniform surface charge on σ0the upper half and an opposite charge -σ0on the lower half (Fig. 3.40). Find the electric potential inside and outside the cylinder.

Electrons undergoing cyclotron motion can be sped up by increasing the magnetic field; the accompanying electric field will impart tangential acceleration. This is the principle of the betatron. One would like to keep the radius of the orbit constant during the process. Show that this can be achieved by designing a magnet such that the average field over the area of the orbit is twice the field at the circumference (Fig. 7.53). Assume the electrons start from rest in zero field, and that the apparatus is symmetric about the center of the orbit. (Assume also that the electron velocity remains well below the speed of light, so that nonrelativistic mechanics applies.) [Hint: Differentiate Eq. 5.3 with respect to time, and use .F=ma=qE]

A transformer (Prob. 7.57) takes an input AC voltage of amplitude V1, and delivers an output voltage of amplitude V2, which is determined by the turns ratio (V2V1=N2N1). If N2>N1, the output voltage is greater than the input voltage. Why doesn't this violate conservation of energy? Answer: Power is the product of voltage and current; if the voltage goes up, the current must come down. The purpose of this problem is to see exactly how this works out, in a simplified model.

(a) In an ideal transformer, the same flux passes through all turns of the primary and of the secondary. Show that in this case M2=L1L2, where Mis the mutual inductance of the coils, and L1,L2, are their individual self-inductances.

(b) Suppose the primary is driven with AC voltage Vin=V1cos(ωt), and the secondary is connected to a resistor, R. Show that the two currents satisfy the relations

L1=dl1dt+Mdl2dt=V1cos(ωt);L1=dl2dt+Mdl1dt=-I2R.

(c) Using the result in (a), solve these equations for localid="1658292112247" l1(t)and l2(t). (Assume l2has no DC component.)

(d) Show that the output voltage (Vout=l2R)divided by the input voltage (Vin)is equal to the turns ratio: VoutVin=N2N1.

(e) Calculate the input power localid="1658292395855" (Pin=Vinl1)and the output power (Pout=Voutl2), and show that their averages over a full cycle are equal.

Suppose

E(r,t)=14πε0qr2θ(rυt)r^; B(r,t)=0

(The theta function is defined in Prob. 1.46b). Show that these fields satisfy all of Maxwell's equations, and determine ρ and J. Describe the physical situation that gives rise to these fields.

A long solenoid of radius a, carrying n turns per unit length, is looped by a wire with resistance R, as shown in Fig. 7.28.

(a) If the current in the solenoid is increasing at a constant rate (dl/dt=k),, what current flows in the loop, and which way (left or right) does it pass through the resistor?

(b) If the currentlin the solenoid is constant but the solenoid is pulled out of the loop (toward the left, to a place far from the loop), what total charge passes through the resistor?

See all solutions

Recommended explanations on Physics Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free