Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

Work out, and interpret physically, theμ=0 component of the electromagnetic force law, Eq. 12.128.

Short Answer

Expert verified

The power delivered to the particle is force qE times velocityu.

Step by step solution

01

Expression for the Minkowski force on a charge q:

Write the expression for the Minkowski force on a charge q.

Kμ=qηvFμν …… (1)

Here, q is the charge andηv is the proper velocity.

02

Determine the Minkowski force equation at μ=0 :

Substituteμ=0in equation (1).

K0=qηvF0v

Write the above equation up to 0 to 3 variable terms.

K0=qη1F01+η2F02+η3F03 …… (2)

Write the equation for the field-tensor in terms of four-vector potential.

Fμv=Avxμ-Aμxv …… (3)

For F01, equation (3) becomes,

F01=A1x0-A0x1 …… (4)

Here localid="1653996612820" x0=ct,x1=x,A1=-Axand A0=vc.

Substitute the above values in equation (4).

F01=Axct-vcxF01=-Axct-1cvxF01=-1cAxt+vF01=-Exc

Similarly, for F02andF03:

F02=-EycF03=-Ezc

Substitute F01=Exc,F02=EycandF03=Ezcin equation (2).

K0=-qη1Exc+η2Eyc+η3EzcK0=qη·EcK0=qγu·Ec

03

Work out and interpret physically, the μ=0 component of the electromagnetic law:

It is also known that:

K0=1cdWdb ……. (5)

Here, W is the energy of a particle.

Write the equation fordb .

db=1γdt

Substitutedb=1γdt andK0=qγu·Ec in equation (5).

qγu·Ec=1cdW1γdtdWdt=qu·E

The above equation says that power given to the particle is equal to the product of charge and electric field, i.e., force and the velocity u.

Therefore, the power delivered to the particle is force qE times velocity u.

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Study anywhere. Anytime. Across all devices.

Sign-up for free