Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

(a) Repeat Prob. 12.2 (a) using the (incorrect) definition p=mu, but with the (correct) Einstein velocity addition rule. Notice that if momentum (so defined) is conserved in S, it is not conserved inlocalid="1654750932476" S. Assume all motion is along the x axis.

(b) Now do the same using the correct definition,localid="1654750939709" p=mη . Notice that if momentum (so defined) is conserved in S, it is automatically also conserved inlocalid="1654750943454" S. [Hint: Use Eq. 12.43 to transform the proper velocity.] What must you assume about relativistic energy?

Short Answer

Expert verified

(a) It is proved that the momentum is not conserved inSframe.

(b) It is proved that the momentum is also conserved in Sframe.

Step by step solution

01

Expression for the conservation of momentum:

Write the expression for the conservation of momentum.

mAuA+mBuB=mcuc+mDuD …… (1)

Here, mAis the mass of particle A, uAis the initial velocity of the particle, mBis the mass of particle B, uBis the initial velocity of particle B,mC is the mass of particle C, uCis the initial velocity of particle C, is the mass of particle D anduD is the initial velocity of particle D.

02

Determine that the momentum is not conserved in S :

(a)

Using the Einstein velocity addition rule in the S frame, write the initial velocities of all the particles.

uA=uA+v1+uAvc2uB=uB+v1+uBvc2uC=uC+v1+uCvc2uD=uD+v1+uDvc2

Substitute all the above values in equation (1).

mAuA+v1+uAvc2+mBuB+v1+uBvc2=mCuC+v1+uCvc2+mDuD+v1+uDvc2

If the masses of all particles are equal, the initial velocities of all the particles will be,

uA=-uB=vuC=uD=0

As the above condition indicates that it is a symmetric, completely inelastic collision in the S frame, the momentum is clearly conserved in the S frame.

Using the Einstein velocity addition rule in Sframe, write the initial velocities of all the particles.

uA=0uB=-2u1+u2c2uC=-uuD=-u

Substitute all the above values in equation (1).

mA0+mB-2u1+u2c2=mC-u+mD-u

As all the masses are equal then,

m0+m-2u1+u2c2=m-u+m-u0+m-2u1+u2c2=-2mum-2u1+u2c2-2mu

Therefore, it is proved that the momentum is not conserved in Sframe.

03

Determine that the momentum is conserved in S:

(b)

Write the expression for the conservation of momentum for proper velocity.

mAηA+mBηB=mcηc+mDηD …… (2)

Using the Lorentz inverse transformation, write the initial velocities of all the particles.

ηA=γηA+βηA0ηB=γηB+βηB0ηC=γηC+βηC0ηD=γηD+βηD0

Substitute all the above values in equation (2).

mAγηA+βηA0+mBγηB+βηB0=mCγηC+βηC0+mDγηD+βηD0mAηA+mBηB+βηA0+ηB0=mCηC+mDηD+βηC0+ηD0

As it is known by the relativistic energy.

P0=mη=E0c

So, if energy is conserved inSframe, the energy of the particle will also be conserved. Hence,

EA+EB=E0+ED

So, the momentum will also be conserved. Hence,

mAηA+mBηB=mAηC+mDηD

Therefore, it is proved that the momentum is also conserved inSframe.

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

A sailboat is manufactured so that the mast leans at an angle with respect to the deck. An observer standing on a dock sees the boat go by at speed v (Fig. 12.14). What angle does this observer say the mast makes?

A car is traveling along the line in S (Fig. 12.25), at (ordinary) speed2/5c .

(a) Find the components Ux and Uyof the (ordinary) velocity.

(b) Find the components ηxandηyof the proper velocity.

(c) Find the zeroth component of the 4-velocity, η0.

System S¯is moving in the x direction with (ordinary) speed ,2/5c relative to S. By using the appropriate transformation laws:

(d) Find the (ordinary) velocity components υxandυyin S¯.

(e) Find the proper velocity components ηxandηyin S¯.

(f) As a consistency check, verify that

η¯=u¯1-u¯2c2

Sophie Zabar, clairvoyante, cried out in pain at precisely the instant her twin brother, 500km away, hit his thumb with a hammer. A skeptical scientist observed both events (brother’s accident, Sophie’s cry) from an airplane traveling at1213c to the right (Fig. 12.19). Which event occurred first, according to the scientist? How much earlier was it, in seconds?

“Derive” the Lorentz force law, as follows: Let chargeqbe at rest inS, so F=qE, and let Smove with velocityv=vxwith respect to S. Use the transformation rules (Eqs. 12.67 and 12.109) to rewrite Fin terms of F, and Ein terms of E and B. From these, deduce the formula for F in terms of E and B.

Generalize the laws of relativistic electrodynamics (Eqs. 12.127 and 12.128) to include magnetic charge. [Refer to Sect. 7.3.4.]

See all solutions

Recommended explanations on Physics Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free