Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

Obtain the continuity equation (Eq. 12.126) directly from Maxwell’s equations (Eq. 12.127).

Short Answer

Expert verified

The continuity equation is obtained as Jμxμ=0.

Step by step solution

01

Expression for Maxwell’s equation: 

Using equation 12.127, write the expression for Maxwell’s equation.

Fμvxv=μ0Jμ …… (1)

It is known that:

xv=v

Substitute vfor xvin equation (1).

vFμv=μ0Jμ …… (2)

02

Determine the continuity equation from Maxwell’s equation:

Differentiate the equation (2).

vμFμv=μ0μJμ

From the above equation, observe the symmetric and anti-symmetric combination.

vμ=μv   (Symmetric)Fμv=Fμv   (Anti-symmetric)

Since it is known that:

μvFμv=0

As the above indices are summed from 0 to 3, the term μand v can be pronounced as the same. Hence,

μvFμv=vμFμv=μv(Fμv)=μvFμv

Now, as the above quantity is equal to minus itself, it must be zero. Hence,Jμxμ=0

Therefore, the continuity equation is obtained asJμxμ=0 .

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

(a) What’s the percent error introduced when you use Galileo’s rule, instead of Einstein’s, withvAB=5mi/handvBC=60mi/hand?

(b) Suppose you could run at half the speed of light down the corridor of a train going three-quarters the speed of light. What would your speed be relative to the ground?

(c) Prove, using Eq. 12.3, that ifvAB<candvBC<cthenvAC<cInterpret this result.


Sophie Zabar, clairvoyante, cried out in pain at precisely the instant her twin brother, 500km away, hit his thumb with a hammer. A skeptical scientist observed both events (brother’s accident, Sophie’s cry) from an airplane traveling at1213c to the right (Fig. 12.19). Which event occurred first, according to the scientist? How much earlier was it, in seconds?


A rocket ship leaves earth at a speed of 35c. When a clock on the rocket says has elapsed, the rocket ship sends a light signal back to earth.

(a) According to earth clocks, when was the signal sent?

(b) According to earth clocks, how long after the rocket left did the signal arrive back on earth?

(c) According to the rocket observer, how long after the rocket left did the signal arrive back on earth?

Question: A stationary magnetic dipole,m=mz^ , is situated above an infinite uniform surface currentK=Kx^, (Fig. 12.44).

(a) Find the torque on the dipole, using Eq. 6.1.

(b) Suppose that the surface current consists of a uniform surface charge , moving at velocityv=vx^ , so that K=σv, and the magnetic dipole consists of a uniform line charge , circulating at speed (same ) around a square loop of side I , as shown, so thatm=λvl2 .Examine the same configuration from the point of view of system, moving S¯in the direction at speed . In S¯, the surface charge is at rest, so it generates no magnetic field. Show that in this frame the current loop carries an electric dipole moment, and calculate the resulting torque, using Eq. 4.4.

See all solutions

Recommended explanations on Physics Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free