Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

Prove that the symmetry (or antisymmetry) of a tensor is preserved by Lorentz transformation (that is: if is symmetric, show that is also symmetric, and likewise for antisymmetric).

Short Answer

Expert verified

The symmetry (or antisymmetry) of a tensor is preserved by Lorentz transformation.

Step by step solution

01

Expression for the property of symmetric and antisymmetric tensor:

Write the property of the symmetric tensor.

tμν=tνμ

Write the property of an anti-symmetric tensor.

role="math" localid="1650574388909" tμν=-tνμ

Here, a negative sign for anti-symmetric tensor.

02

Determine the symmetry or antisymmetry of a tensor:

Consider

t-κλ=AμκAνλtμν

Here, A is the Lorentz transformation matrix.

Since μand v both are summed from 0 to 3, both the values can be interchanged.

Hence, the above equation becomes,

t-κλ=AμκAνλtμνt-κλ=AνλAμκtνμt-κλ=AμκAμλ(-tμν)t-κλ=±t-κλ

Therefore, the symmetry (or antisymmetry) of a tensor is preserved by Lorentz transformation.

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

(a) Equation 12.40 defines proper velocity in terms of ordinary velocity. Invert that equation to get the formula for u in terms of η.

(b) What is the relation between proper velocity and rapidity (Eq. 12.34)? Assume the velocity is along the x direction, and find as a function of θ.

A neutral pion of (rest) mass mand (relativistic) momentum p=34mcdecays into two photons. One of the photons is emitted in the same direction as the original pion, and the other in the opposite direction. Find the (relativistic) energy of each photon.

The twin paradox revisited. On their birthday, one twin gets on a moving sidewalk, which carries her out to star X at speed45c ; her twin brother stays home. When the traveling twin gets to star X, she immediately jumps onto the returning moving sidewalk and comes back to earth, again at speed 45c. She arrives on her 39th birthday (as determined by her watch).

(a) How old is her twin brother?

(b) How far away is star X? (Give your answer in light years.) Call the outbound sidewalk system S¯and the inbound oneS¯ (the earth system is S). All three systems choose their coordinates and set their master clocks such that x=x¯=x~=0,t=t¯=t~=0at the moment of departure.

(c) What are the coordinates ( x,t ) of the jump (from outbound to inbound sidewalk) in S?

(d) What are the coordinates role="math" localid="1650588001605">x¯,t¯of the jump in ?

(e) What are the coordinates role="math" localid="1650588044697">x~,t~ of the jump in ?

(f) If the traveling twin wants her watch to agree with the clock in S , how must she reset it immediately after the jump? What does her watch then read when she gets home? (This wouldn’t change her age, of course—she’s still 39—it would just make her watch agree with the standard synchronization in S.)

(g) If the traveling twin is asked the question, “How old is your brother right now?”, what is the correct reply (i) just before she makes the jump, (ii) just after she makes the jump? (Nothing dramatic happens to her brother during the split second between (i) and (ii), of course; what does change abruptly is his sister’s notion of what “right now, back home” means.)

(h) How many earth years does the return trip take? Add this to (ii) from (g) to determine how old she expects him to be at their reunion. Compare your answer to (a).

(a) What’s the percent error introduced when you use Galileo’s rule, instead of Einstein’s, withvAB=5mi/handvBC=60mi/hand?

(b) Suppose you could run at half the speed of light down the corridor of a train going three-quarters the speed of light. What would your speed be relative to the ground?

(c) Prove, using Eq. 12.3, that ifvAB<candvBC<cthenvAC<cInterpret this result.


A sailboat is manufactured so that the mast leans at an angle with respect to the deck. An observer standing on a dock sees the boat go by at speed v (Fig. 12.14). What angle does this observer say the mast makes?

See all solutions

Recommended explanations on Physics Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free