Chapter 4: Q43P (page 209) URL copied to clipboard! Now share some education! A conducting sphere of radius a, at potential V0, is surrounded by athin concentric spherical shell of radius b,over which someone has glued a surface charge σ(θ)=kcosθ,where k is a constant and θis the usual spherical coordinate.a) Find the potential in each region: (i) r>b, and (ii) a<r<b.b) Find the induced surface charge σi(θ)on the conductor.c) What is the total charge of this system? Check that your answer is consistent with the behavior of V at large. Short Answer Expert verified a) for r≥b, Vr,θ=aV0r+b3-a33r2ε0 For a≤r≤b, Vr,θ=aV0r+K3ε0ra3r2cosθThe induced charge density is σiθ=+ε0V0a-kcosθ.The total charge on system is 4πε0aV0. Step by step solution 01 Define function Here, the configuration is asymptotically symmetric,Write the expression for the electric potential in spherical polar co-ordinates.V(cosθ)=∑i=1∞(Alrl+Blrl+l)Pl(cosθ) …… (1) 02 Determine (a) a)For r > bIn equation (1), A, =0 for all / because V→0at infinity.Thus, Vr,θ=∑Clrl+Dlrl+lPlcosθForr<a,Vr,θ=V0Usingboundaryconditions,Viscontinuousata……(a)Viscontinuousatb……(b)Atb,∆∂V∂r=-1ε0σθ……(c)Here,σθisthesurfacechargedensity.Now,substitutekcosθforσθinequation(c)∆∂V∂r=-kcosθε0Now,usingboundarycondition(b),Viscontinuousatb,∑l=1∞Blbl+1Plcosθ=∑l=1∞Clbl+Dlbl+1PlcosθClbl+Dlbl+1=Blbl+1Bl=Clb2l+1+Di……(2)Usingboundarycondition(a),Viscontinuousata∑l+1∞clal+Dlal+1Plcosθ=V0……(3)Ifl=0,thenV0=C0a0+D0a0+1=C0+D0a……(4)D0=aV0-aC0Substituteinequation(2),B0=bC0+D0…….(5)Substitute(4)in(5),B0=b-aC0+aV0……(6)Ifl≠0,Clal+Dlal+1=0Dl=Cla2l+1……(7)Substituteequation(7)inequation(2),Bl=Clb2l+1-a2l+1……(8)Fromtheboundarycondition(c)∑l=1∞Bl-l+11bl+2P1cosθ+∑l=1∞Cllbl+1+Dll+1bl+2P1cosθ=-kcosθε0Ifl≠1,then-l+1bl+2Bl-Cllbl-1+Dl-l+1bl+2=0-l+1Bl-lCllb2l-1+l+1Dl=0l+1Bl-Di=-lb2l+1C……(9)Ifl=1,then2B1b2+C1+D1-2b2=kε0C1+2b3B1-D1=kε0…….(10)Fromequation(7),(8),(9)Forl≠0or1,l+1b2l+1-a2l+1Cl+a2l+1Cl+lb2l+1Cl=0l+1lb2l+1Cl+lb2l+1Cl=02l+1Cl=0Cl=0Therefore,Bl=Cl=Dl=0,forl>1.Forl=1C1+2b3b3-a3C1+a3C1=kε03C1=K/ε0C1=k3ε0Thus,C1=k3ε0Fromequation7,D1=-a3C1SubstituteC1=k3ε0inaboveequationD1=-a3k3ε0As,Bl=b3-a3C1SubstituteC1=k3ε0inaboveequationB1=b3-a3k3ε0Now,fromequation9,forl=0B0-D0=0B0=D0Now,equatingequation4and5b-aC0+aV0=aV0-aC0Thus,C0=0Therefore,D0=B0=aV0Hence,forr≥b,Vr,θ=aV0r+b3-a3k3r2ε0Fora≤r≤b,Vr,θ=aV0r+k3ε0r-a3r2cosθ 03 Determine part (b) b)Write the expression for induced surface charge density on the conductor.σiθ=-ε0∂V∂tr=aσiθ=-ε0-aV0r0+K3ε01+2a3r3cosθSolveasfurther,σiθ=-ε0-aV0a0+K3ε01+2a3r3cosθσiθ=-ε0-aV0r0+K3ε0cosθσiθ=+ε0V0a-kcosθThus,inducedchargedensityisσiθ=+ε0V0a-kcosθ. 04 Determine part (c) c)Write the expression for total charge on system.q=∫σida=V0ε0a4πa2=4πε0aV0AtlargeVV=14πε0Qr=4πε0aV04πε0r=aV0rTherefore, the total charge on system is 4πε0aV0. Unlock Step-by-Step Solutions & Ace Your Exams! Full Textbook Solutions Get detailed explanations and key concepts Unlimited Al creation Al flashcards, explanations, exams and more... Ads-free access To over 500 millions flashcards Money-back guarantee We refund you if you fail your exam. Start your free trial Over 30 million students worldwide already upgrade their learning with Vaia!