Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

When you polarize a neutral dielectric, the charge moves a bit, but the total remains zero. This fact should be reflected in the bound charges σb and ρb· Prove from Eqs. 4.11 and 4.12 that the total bound charge vanishes.

Short Answer

Expert verified

The value of total charge of a piece of neutral dielectricQtotal is 0.

Step by step solution

01

Write the given data from the question

Consider thereflected in the bound charges σband ρb·

Consider when you polarize a neutral dielectric, the charge moves a bit, but the total remains zero.

02

Determine the formula of total charge of a piece of neutral dielectric Qtotal.

Write the formula of total charge of a piece of neutral dielectric Qtotal.

Qtotal=SσbdS+νρbdτ …… (1)

Here, σb and ρb are the reflected in the bound charges.

03

 Determine the value of total charge of a piece of neutral dielectric Qtotal.

Determine thetotal charge of a piece of neutral dielectric.

SubstitutePn^ for σandP forρ into equation (1).

Qtotal=SσdS+νPdτ

However, according to divergence law, the two terms are equivalent and cancel one another out.

Qtotal=0

Therefore, the value of total charge of a piece of neutral dielectricQtotal is 0.

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

According to Eq. 4.1, the induced dipole moment of an atom is proportional to the external field. This is a "rule of thumb," not a fundamental law,

and it is easy to concoct exceptions-in theory. Suppose, for example, the charge

density of the electron cloud were proportional to the distance from the center, out to a radius R.To what power of Ewould pbe proportional in that case? Find the condition on such that Eq. 4.1 will hold in the weak-field limit.

A conducting sphere of radius a, at potential V0, is surrounded by a

thin concentric spherical shell of radius b,over which someone has glued a surface charge

σθ=kcosθ

where K is a constant and is the usual spherical coordinate.

a). Find the potential in each region: (i) r>b, and (ii) a<r<b.

b). Find the induced surface chargeσiθ on the conductor.

c). What is the total charge of this system? Check that your answer is consistent with the behavior of v at large r.

An uncharged conducting sphere of radius ais coated with a thick

insulating shell (dielectric constant εr) out to radius b.This object is now placed in an otherwise uniform electric field E0. Find the electric field in the insulator.

A point charge Qis "nailed down" on a table. Around it, at radius R,

is a frictionless circular track on which a dipolep rides, constrained always to point tangent to the circle. Use Eq. 4.5 to show that the electric force on the dipole is

F=Q4ττε0pR3

Notice that this force is always in the "forward" direction (you can easily confirm

this by drawing a diagram showing the forces on the two ends of the dipole). Why

isn't this a perpetual motion machine?

A hydrogen atom (with the Bohr radius of half an angstrom) is situated

between two metal plates 1 mm apart, which are connected to opposite terminals of a 500 V battery. What fraction of the atomic radius does the separation distance d amount to, roughly? Estimate the voltage you would need with this apparatus to ionize the atom. [Use the value of in Table 4.1. Moral:The displacements we're talking about are minute,even on an atomic scale.]

See all solutions

Recommended explanations on Physics Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free