Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

A point charge Qis "nailed down" on a table. Around it, at radius R,

is a frictionless circular track on which a dipolep rides, constrained always to point tangent to the circle. Use Eq. 4.5 to show that the electric force on the dipole is

F=Q4ττε0pR3

Notice that this force is always in the "forward" direction (you can easily confirm

this by drawing a diagram showing the forces on the two ends of the dipole). Why

isn't this a perpetual motion machine?

Short Answer

Expert verified

It is proved that the electric force on a dipole that moves in a circle ofradius R

around a point charge Qis

F=Q4ττε0pR3

Step by step solution

01

Given data

A point charge Qis fixed on a table.

With Q at the center, a dipole pmoves on a frictionless circular track of radius R,

and constrained always to point tangent to the circle.

02

Force on a dipole

The force on a dipole having moment pin the presence of an electric field Eis

F=(p.)E.....(1)

03

Derivation of force on a dipole rotating around a point charge

Consider cylindrical coordinates.

The expression for the electric field from a point charge Q is

E=Q4πε0s2s^

Here, ε0is the permittivity of free space.

Using equation (1), Force on the dipole p moving on a circular track with Q at its center is

F=psθQ4πε0s2s^=psQ4πε0s2s^θ=psQ4πε0s2θ^=Q4πε0s3p

The direction of the force is different for the positive and negative ends of the dipole. The net force acts tangential.

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

According to Eq. 4.1, the induced dipole moment of an atom is proportional to the external field. This is a "rule of thumb," not a fundamental law,

and it is easy to concoct exceptions-in theory. Suppose, for example, the charge

density of the electron cloud were proportional to the distance from the center, out to a radius R.To what power of Ewould pbe proportional in that case? Find the condition on such that Eq. 4.1 will hold in the weak-field limit.

According to quantum mechanics, the electron cloud for a hydrogen

atom in the ground state has a charge density

ρ(r)=qττa3e-2ra

where qis the charge of the electron and ais the Bohr radius. Find the atomic

polarizability of such an atom. [Hint:First calculate the electric field of the electron cloud, Ee(r) then expand the exponential, assuming ra.

A conducting sphere of radius a, at potential V0, is surrounded by a

thin concentric spherical shell of radius b,over which someone has glued a surface charge

σθ=kcosθ

where K is a constant and is the usual spherical coordinate.

a). Find the potential in each region: (i) r>b, and (ii) a<r<b.

b). Find the induced surface chargeσiθ on the conductor.

c). What is the total charge of this system? Check that your answer is consistent with the behavior of v at large r.

For the bar electret of Prob. 4.11, make three careful sketches: one

of P, one of E, and one of D. Assume L is about 2a. [Hint: E lines terminate on

charges; D lines terminate on free charges.]

An electric dipole p, pointing in the ydirection, is placed midwaybetween two large conducting plates, as shown in Fig. 4.33. Each plate makes a small angle θwith respect to the xaxis, and they are maintained at potentials ±V.What is the directionof the net force onp?(There's nothing to calculate,here, butdo explain your answer qualitatively.)

See all solutions

Recommended explanations on Physics Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free