Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

Calculate W,using both Eq. 4.55 and Eq. 4.58, for a sphere of radius

Rwith frozen-in uniform polarization P (Ex. 4.2). Comment on the discrepancy.

Which (if either) is the "true" energy of the system?

Short Answer

Expert verified

For a sphere of radius Rwith frozen-in uniform polarization Pusing Eq. 4.55 is 2πR3P29ε0and that using Eq. 4.58 is 0. Eq. 4.58 is the work done in the presence of free charge which is absent in the configuration causing the discrepancy in the result.

Step by step solution

01

Given data

There is a sphere of radius Rwith frozen-in uniform polarization P.

02

Energy of the system and volume element

The expression for the energy of the system is

W=ε02E2.....(1)W=12D.E.....(1)

Here, is the permittivity of free space, Dis the displacement current and Eis the electric field.

The infinitesimal volume element in spherical polar coordinates is

=r2sinθdrdθdϕ.....(3)

Here, r , θandϕ are spherical polar coordinates.

03

Derivation of work done

The electric field of the configuration is

E=-P3ε0z^R3P3ε0r32cosθr^+sinθθ^

Here, Pis the polarization vector and z is a Cartesian coordinate.

Using equation (1) and (3), the work done is

W=ε02P3ε0243πR3+ε02R3P3ε022π0π1+3cos2θsinθdθR1r4dr=2π27P2R3ε0+4πR3P227ε0=2πR3P29ε0

The displacement current of the configuration is

D=ε0Er>Rε0E+Pr<R=ε0Er>R2ε0Er<R

The work done using equation (2) is then

W=ε02E2dτ-2ε02E2dτ=4πR3P227ε0-4πR3P227ε0=0

Thus, the work done as calculated using equation (1) is 2πR3P29ε0and the work done calculated using (2) is 0. In the second case, the formula for work done is for free charge which is not present in the configuration.

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

Suppose you have enough linear dielectric material, of dielectric constant rto half-fill a parallel-plate capacitor (Fig. 4.25). By what fraction is the capacitance increased when you distribute the material as in Fig. 4.25(a)? How about Fig. 4.25(b)? For a given potential difference V between the plates, find E, D, and P , in each region, and the free and bound charge on all surfaces, for both cases.

A conducting sphere of radius a, at potential V0, is surrounded by a

thin concentric spherical shell of radius b,over which someone has glued a surface charge

σ(θ)=kcosθ,

where k is a constant and θis the usual spherical coordinate.

a) Find the potential in each region: (i) r>b, and (ii) a<r<b.

b) Find the induced surface charge σi(θ)on the conductor.

c) What is the total charge of this system? Check that your answer is consistent with the behavior of V at large.

For the bar electret of Prob. 4.11, make three careful sketches: one

of P, one of E, and one of D. Assume L is about 2a. [Hint: E lines terminate on

charges; D lines terminate on free charges.]

The Clausius-Mossotti equation (Prob. 4.41) tells you how to calculatethe susceptibility of a nonpolar substance, in terms of the atomic polariz-ability. The Langevin equation tells you how to calculate the susceptibility of apolar substance, in terms of the permanent molecular dipole moment p. Here's howit goes:

(a) The energy of a dipole in an external field E isu=-p·Ecosθ

(Eq. 4.6), whereθ is the usual polar angle, if we orient the z axis along E.

Statistical mechanics says that for a material in equilibrium at absolute temperature

T, the probability of a given molecule having energy u is proportional to

the Boltzmann factor,

exp(-u/kT)

The average energy of the dipoles is therefore

<u>=ue-(u/kt)e-(u/kT)

where =sinθdθdϕ, and the integration is over all orientations θ:0π;ϕ:02πUse this to show that the polarization of a substance

containing N molecules per unit volume is

P=Np[cothpE/kT-kT/pE] (4.73)

That's the Langevin formula. Sketch as a function ofPE/KT .

(b) Notice that for large fields/low temperatures, virtually all the molecules arelined up, and the material is nonlinear. Ordinarily, however, kT is much greaterthan p E. Show that in this regime the material is linear, and calculate its susceptibility,in terms of N, p, T, and k. Compute the susceptibility of water at 20°C,and compare the experimental value in Table 4.2. (The dipole moment of wateris 6.1×10-30C·m) This is rather far off, because we have again neglected thedistinction between E and Eelse· The agreement is better in low-density gases,for which the difference between E and Eelse is negligible. Try it for water vapor

at 100°C and 1 atm.

A thick spherical shell (inner radius a, outer radius b) is made of dielectric material with a "frozen-in" polarization

P(r)=krr^

Where a constant and is the distance from the center (Fig. 4.18). (There is no free charge in the problem.) Find the electric field in all three regions by two different methods:

Figure 4.18

(a) Locate all the bound charge, and use Gauss's law (Eq. 2.13) to calculate the field it produces.

(b) Use Eq. 4.23 to find D, and then getE from Eq. 4.21. [Notice that the second method is much faster, and it avoids any explicit reference to the bound charges.]

See all solutions

Recommended explanations on Physics Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free