Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

A spherical conductor, of radius a,carries a charge Q(Fig. 4.29). It

is surrounded by linear dielectric material of susceptibilityXeout to radius b.Find the energy of this configuration (Eq. 4.58).

Short Answer

Expert verified

The energy of a spherical conductor, of radius a,carrying a charge Qand surrounded by linear dielectric material of susceptibility Xeout to radius bis Q28πε01+Xe1a+Xeb .

Step by step solution

01

Given data

A spherical conductor, of radius a,carries a charge Q.

The spherical conductor is surrounded by a linear dielectric material of susceptibility Xeout to radius b.

02

Electrostatic energy and volume element

The electrostatic energy in a configuration is given by

E=12D.Edr.......(1)E=12D.Edr......(1)

Here, Dis the displacement current,Eis the electric field anddris the infinitesimal volume element.

The infinitesimal volume element for radial symmetry is

=4ττr2dr......(2)

Here, ris the radial coordinate.

03

Derivation of energy

The displacement current of the configuration is

D=0r<aQ4πr2r>a

The electric field of the configuration is

E0r<aQ4πεr2a<r<bQ4πε0r2r>b

Here, ε0is the permittivity of free space and εis the permittivity of the surrounding

Thus, using equations (1) and (2), the energy of the configuration is

E=12Q4π24π13ab1r2dr+1ε0b12dr=Q8πε011+Xe-1rab+-1rb=Q28πε01+Xe1a+Xeb

Thus, the energy of the configuration is Q28πε01+Xe1a+Xeb.

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

Suppose the region abovethe xyplane in Ex. 4.8 is alsofilled withlinear dielectric but of a different susceptibility χ'e.Find the potential everywhere.

Suppose the field inside a large piece of dielectric is E0, so that the electric displacement is D0=ε0E0+P.

(a) Now a small spherical cavity (Fig. 4.19a) is hollowed out of the material. Find the field at the center of the cavity in terms of E0and P. Also find the displacement at the center of the cavity in terms of D0and P. Assume the polarization is "frozen in," so it doesn't change when the cavity is excavated. (b) Do the same for a long needle-shaped cavity running parallel to P (Fig. 4.19b).

(c) Do the same for a thin wafer-shaped cavity perpendicular to P (Fig. 4.19c). Assume the cavities are small enough that P,E0, and D0are essentially uniform. [Hint: Carving out a cavity is the same as superimposing an object of the same shape but opposite polarization.]

According to quantum mechanics, the electron cloud for a hydrogen

atom in the ground state has a charge density

ρ(r)=qττa3e-2ra

where qis the charge of the electron and ais the Bohr radius. Find the atomic

polarizability of such an atom. [Hint:First calculate the electric field of the electron cloud, Ee(r) then expand the exponential, assuming ra.

When you polarize a neutral dielectric, the charge moves a bit, but the total remains zero. This fact should be reflected in the bound charges σb and ρb· Prove from Eqs. 4.11 and 4.12 that the total bound charge vanishes.

In a linear dielectric, the polarization is proportional to the field:

P=0χeE.If the material consists of atoms (or nonpolar molecules), the induced

dipole moment of each one is likewise proportional to the fieldp=αE . Question:

What is the relation between the atomic polarizabilityand the susceptibility χe? Since P (the dipole moment per unit volume) is P (the dipole moment per atom)times N (the number of atoms per unit volume),P=Np=NαE, one's first inclination is to say that

χe=Nα0

And in fact this is not far off, if the density is low. But closer inspection reveals

a subtle problem, for the field E in Eq. 4.30 is the total macroscopicfield in the

medium, whereas the field in Eq. 4.1 is due to everything except the particular atom under consideration (polarizability was defined for an isolated atom subject to a specified external field); call this field Eelse· Imagine that the space allotted to each atom is a sphere of radius R ,and show that

E=1-Nα30Eelse

Use this to conclude that

χe=Nα/01-Nα/30

Or

α=30Nr-1r+2

Equation 4.72 is known as the Clausius-Mossottiformula, or, in its application to

optics, the Lorentz-Lorenzequation.

See all solutions

Recommended explanations on Physics Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free