Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

Imagine two parallel infinite sheets, carrying uniform surface charge +σ(on the sheet at z=d) and +σ(at z=0). They are moving in they direction at constant speed v (as in Problem 5.17).

(a) What is the electromagnetic momentum in a region of area A?

(b) Now suppose the top sheet moves slowly down (speed u) until it reaches the bottom sheet, so the fields disappear. By calculating the total force on the charge q=σA, show that the impulse delivered to the sheet is equal to the momentum originally stored in the fields. [Hint: As the upper plate passes by, the magnetic field drops to zero, inducing an electric field that delivers an impulse to the lower plate.]

Short Answer

Expert verified

(a) The electromagnetic momentum in a region of area A is pem=μ0σ2vdAy^.

(b) The impulse delivered to the sheet is equal to the momentum originally stored in the fields.

Step by step solution

01

Expression for the electromagnetic momentum density:

Write the expression for the electromagnetic momentum density.

gem=ε0E×B

Here, E is the electric field, and B is the magnetic field.

02

Determine the electromagnetic momentum in a region of area A:

(a)

Write the expression for the electric field.

E=σε0z^

Write the expression for the magnetic field.

B=μ0σvx^

Substitute all the known values in equation (1).

gem=ε0σε0z^×μ0σvx^gem=μ0σ2vy^

Write the expression for the electromagnetic momentum in a region of area A.

pem=dAgem

Substitute the known values in the above expression.

pem=dAμ0σ2vy^pem=μ0σ2vdAy^

Therefore, the electromagnetic momentum in a region of area A is pem=μ0σ2vdAy^.

03

Show that the impulse delivered to the sheet is equal to the momentum originally stored in the fields:

(b)

Write the expression for the initial impulse delivered to the system.

I1=Fdt….. (2)

Here, F is the magnetic force which is given as:

Determine the expression for the magnetic force.

F=qu×BF=σAuz^×12μ0σvx^F=12μ0σ2Avuy^

Substitute the known value in equation (2).

I1=12μ0σ2Avuy^dtI1=12μ0σ2Avy^udtI1=12dμ0σ2Avy^

Write the expression for the final impulse delivered to the system.

I2=Fdt….. (3)

Here, F is the magnetic force which is given as:

F=qu×BF=σAuz^×12μ0σvx^F=12μ0σ2Avuy^

Substitute the known value in equation (3).

I2=12μ0σ2Avuy^dtI2=12μ0σ2Avy^udtI2=12dμ0σ2Avy^

Hence, the total impulse delivered to the sheet will be,

I=I1+I2I=12dμ0σ2Avy^+12dμ0σ2Avy^I=dAμ0σ2vy^

Hence proved.

Therefore, the impulse delivered to the sheet is equal to the momentum originally stored in the fields.

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

A charged parallel-plate capacitor (with uniform electric field E=Ez^) is placed in a uniform magnetic fieldB=Bx^ , as shown in Fig. 8.6.

Figure 8.6

(a) Find the electromagnetic momentum in the space between the plates.

(b) Now a resistive wire is connected between the plates, along the z-axis, so that the capacitor slowly discharges. The current through the wire will experience a magnetic force; what is the total impulse delivered to the system, during the discharge?

Consider an infinite parallel-plate capacitor, with the lower plate (at z=d2) carrying surface charge density -σ, and the upper plate (atz=+d2) carrying charge density +σ.

(a) Determine all nine elements of the stress tensor, in the region between the plates. Display your answer as a3×3matrix:

(TxxTxyTxzTyxTyyTyzTzxTzyTzz)

(b) Use Eq. 8.21 to determine the electromagnetic force per unit area on the top plate. Compare Eq. 2.51.

(c) What is the electromagnetic momentum per unit area, per unit time, crossing the xy plane (or any other plane parallel to that one, between the plates)?

(d) Of course, there must be mechanical forces holding the plates apart—perhaps the capacitor is filled with insulating material under pressure. Suppose we suddenly remove the insulator; the momentum flux (c) is now absorbed by the plates, and they begin to move. Find the momentum per unit time delivered to the top plate (which is to say, the force acting on it) and compare your answer to (b). [Note: This is not an additional force, but rather an alternative way of calculating the same force—in (b) we got it from the force law, and in (d) we do it by conservation of momentum.]

A very long solenoid of radius a, with n turns per unit length, carries a current ls. Coaxial with the solenoid, at radiusb>>a , is a circular ring of wire, with resistance R. When the current in the solenoid is (gradually) decreased, a currentir is induced in the ring.

a) Calculate role="math" localid="1657515994158" lr, in terms ofrole="math" localid="1657515947581" dlsdt .

(b) The power role="math" localid="1657515969938" (lr2R)delivered to the ring must have come from the solenoid. Confirm this by calculating the Poynting vector just outside the solenoid (the electric field is due to the changing flux in the solenoid; the magnetic field is due to the current in the ring). Integrate over the entire surface of the solenoid, and check that you recover the correct total power.

An infinitely long cylindrical tube, of radius a, moves at constant speed v along its axis. It carries a net charge per unit length λ, uniformly distributed over its surface. Surrounding it, at radius b, is another cylinder, moving with the same velocity but carrying the opposite charge -λ. Find:

(a) The energy per unit length stored in the fields.

(b) The momentum per unit length in the fields.

(c) The energy per unit time transported by the fields across a plane perpendicular to the cylinders.

Derive Eq. 8.43. [Hint: Use the method of Section 7.2.4, building the two currents up from zero to their final values.]

See all solutions

Recommended explanations on Physics Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free