Chapter 9: Problem 8
Physically, what does the Grashof number represent? How does the Grashof number differ from the Reynolds number?
Chapter 9: Problem 8
Physically, what does the Grashof number represent? How does the Grashof number differ from the Reynolds number?
All the tools & learning materials you need for study success - in one app.
Get started for freeConsider an \(L \times L\) horizontal plate that is placed in quiescent air with the hot surface facing up. If the film temperature is \(20^{\circ} \mathrm{C}\) and the average Nusselt number in natural convection is of the form \(\mathrm{Nu}=C \mathrm{Ra}_{L}^{n}\), show that the average heat transfer coefficient can be expressed as $$ \begin{array}{ll} h=1.95(\Delta T / L)^{1 / 4} & 10^{4}<\mathrm{Ra}_{L}<10^{7} \\ h=1.79 \Delta T^{1 / 3} & 10^{7}<\mathrm{Ra}_{L}<10^{11} \end{array} $$
During a plant visit, it was observed that a \(1.5\)-m-high and \(1-\mathrm{m}\)-wide section of the vertical front section of a natural gas furnace wall was too hot to touch. The temperature measurements on the surface revealed that the average temperature of the exposed hot surface was \(110^{\circ} \mathrm{C}\), while the temperature of the surrounding air was \(25^{\circ} \mathrm{C}\). The surface appeared to be oxidized, and its emissivity can be taken to be \(0.7\). Taking the temperature of the surrounding surfaces to be \(25^{\circ} \mathrm{C}\) also, determine the rate of heat loss from this furnace. The furnace has an efficiency of 79 percent, and the plant pays \(\$ 1.20\) per therm of natural gas. If the plant operates \(10 \mathrm{~h}\) a day, 310 days a year, and thus \(3100 \mathrm{~h}\) a year, determine the annual cost of the heat loss from this vertical hot surface on the front section of the furnace wall.
A \(50-\mathrm{cm} \times 50-\mathrm{cm}\) circuit board that contains 121 square chips on one side is to be cooled by combined natural convection and radiation by mounting it on a vertical surface in a room at $25^{\circ} \mathrm{C}\(. Each chip dissipates \)0.18 \mathrm{~W}$ of power, and the emissivity of the chip surfaces is 0.7. Assuming the heat transfer from the back side of the circuit board to be negligible, and the temperature of the surrounding surfaces to be the same as the air temperature of the room, determine the surface temperature of the chips. Evaluate air properties at a film temperature of \(30^{\circ} \mathrm{C}\) and \(1 \mathrm{~atm}\) pressure. Is this a good assumption? Answer: \(36.2^{\circ} \mathrm{C}\)
Hot engine oil is being transported in a horizontal pipe $\left(k=15 \mathrm{~W} / \mathrm{m} \cdot \mathrm{K}, D_{i}=5 \mathrm{~cm}\right)$ with a wall thickness of \(5 \mathrm{~mm}\). The pipe is covered with a \(5-\mathrm{mm}\)-thick layer of insulation $(k=0.15 \mathrm{~W} / \mathrm{m} \cdot \mathrm{K})\(. A length of \)2 \mathrm{~m}$ of the outer surface is exposed to cool air at \(10^{\circ} \mathrm{C}\). If the pipe inner surface temperature is at \(90^{\circ} \mathrm{C}\), determine the outer surface temperature. Hint: The pipe outer surface temperature has to be found iteratively. Begin the calculations by using a film temperature of $50^{\circ} \mathrm{C}$.
A group of 25 power transistors, dissipating \(1.5 \mathrm{~W}\) each, are to be cooled by attaching them to a black-anodized square aluminum plate and mounting the plate on the wall of a room at \(30^{\circ} \mathrm{C}\). The emissivity of the transistor and the plate surfaces is 0.9. Assuming the heat transfer from the back side of the plate to be negligible and the temperature of the surrounding surfaces to be the same as the air temperature of the room, determine the size of the plate if the average surface temperature of the plate is not to exceed \(50^{\circ} \mathrm{C}\). Answer: $43 \mathrm{~cm} \times 43 \mathrm{~cm}$
What do you think about this solution?
We value your feedback to improve our textbook solutions.