A vertical \(0.9\)-m-high and \(1.5\)-m-wide double-pane window consists of two
sheets of glass separated by a \(2.0-\mathrm{cm}\) air gap at atmospheric
pressure. If the glass surface temperatures across the air gap are measured to
be \(20^{\circ} \mathrm{C}\) and \(30^{\circ} \mathrm{C}\), the rate of heat
transfer through the window is
(a) \(16.3 \mathrm{~W}\)
(b) \(21.7 \mathrm{~W}\)
(c) \(24.0 \mathrm{~W}\)
$\begin{array}{ll}\text { (d) } 31.3 \mathrm{~W} & \text { (e) } 44.6
\mathrm{~W}\end{array}$
(For air, use $k=0.02551 \mathrm{~W} / \mathrm{m} \cdot \mathrm{K}, \quad
\operatorname{Pr}=0.7296\(, \)\nu=1.562 \times 10^{-5} \mathrm{~m}^{2} /
\mathrm{s}\(. Also, the applicable correlation is \)\left.\mathrm{Nu}=0.42
\mathrm{Ra}^{1 / 4} \operatorname{Pr}^{0.012}(H / L)^{-0.3} .\right)$