Chapter 9: Problem 4
When will the hull of a ship sink deeper in the water: when the ship is sailing in fresh water or in seawater? Why?
Chapter 9: Problem 4
When will the hull of a ship sink deeper in the water: when the ship is sailing in fresh water or in seawater? Why?
All the tools & learning materials you need for study success - in one app.
Get started for freeA \(0.5-\mathrm{m} \times 0.5-\mathrm{m}\) vertical ASTM A240 410S stainless steel plate has one surface subjected to convection with a cold, quiescent gas at \(-70^{\circ} \mathrm{C}\). The type of cold gas that the plate surface is exposed to alternates between carbon dioxide and hydrogen. The minimum temperature suitable for the stainless steel plate is \(-30^{\circ} \mathrm{C}\) (ASME Code for Process Piping, ASME B31.3-2014, Table A-1M). Determine the heat addition rate necessary for keeping the plate surface temperature from dropping below the minimum suitable temperature, such that it is applicable to both carbon dioxide gas and hydrogen gas.
Skylights or "roof windows" are commonly used in homes and manufacturing facilities since they let natural light in during daytime and thus reduce the lighting costs. However, they offer little resistance to heat transfer, and large amounts of energy are lost through them in winter unless they are equipped with a motorized insulating cover that can be used in cold weather and at nights to reduce heat losses. Consider a \(1-\mathrm{m}\)-wide and \(2.5\)-m-long horizontal skylight on the roof of a house that is kept at \(20^{\circ} \mathrm{C}\). The glazing of the skylight is made of a single layer of \(0.5-\mathrm{cm}\)-thick glass $(k=0.78 \mathrm{~W} / \mathrm{m} \cdot \mathrm{K}\( and \)\varepsilon=0.9$ ). Determine the rate of heat loss through the skylight when the air temperature outside is \(-10^{\circ} \mathrm{C}\) and the effective sky temperature is \(-30^{\circ} \mathrm{C}\). Compare your result with the rate of heat loss through an equivalent surface area of the roof that has a common \(R-5.34\) construction in SI units (i.e., a thickness-to- effective-thermal-conductivity ratio of $5.34 \mathrm{~m}^{2} . \mathrm{K} / \mathrm{W}\( ). Evaluate air properties at a film temperature of \)-7^{\circ} \mathrm{C}\( and \)1 \mathrm{~atm}$ pressure. Is this a good assumption?
Hot engine oil is being transported in a horizontal pipe $\left(k=15 \mathrm{~W} / \mathrm{m} \cdot \mathrm{K}, D_{i}=5 \mathrm{~cm}\right)$ with a wall thickness of \(5 \mathrm{~mm}\). The pipe is covered with a \(5-\mathrm{mm}\)-thick layer of insulation $(k=0.15 \mathrm{~W} / \mathrm{m} \cdot \mathrm{K})\(. A length of \)2 \mathrm{~m}$ of the outer surface is exposed to cool air at \(10^{\circ} \mathrm{C}\). If the pipe inner surface temperature is at \(90^{\circ} \mathrm{C}\), determine the outer surface temperature. Hint: The pipe outer surface temperature has to be found iteratively. Begin the calculations by using a film temperature of $50^{\circ} \mathrm{C}$.
Consider a cylinder with a length of \(15 \mathrm{~cm}\) and a diameter of $10 \mathrm{~cm}\(. The cylinder has a surface temperature of \)43^{\circ} \mathrm{C}\(, while the room air temperature is \)17^{\circ} \mathrm{C}$. Determine whether placing the cylinder horizontally or vertically would achieve a higher heat transfer rate.
A \(0.2-\mathrm{m}\)-long and \(25-\mathrm{mm}\)-thick vertical plate $(k=1.5 \mathrm{~W} / \mathrm{m} \cdot \mathrm{K})$ separates the hot water from the cold air at \(2^{\circ} \mathrm{C}\). The plate surface exposed to the hot water has a temperature of \(100^{\circ} \mathrm{C}\), and the surface exposed to the cold air has an emissivity of \(0.73\). Determine the temperature of the plate surface exposed to the cold air \(\left(T_{s, c}\right)\). Hint: The \(T_{s, c}\) has to be found iteratively. Start the iteration process with an initial guess of \(51^{\circ} \mathrm{C}\) for the \(T_{s, c^{*}}\)
What do you think about this solution?
We value your feedback to improve our textbook solutions.