Chapter 9: Problem 3
Consider a hot boiled egg in a spacecraft that is filled with air at atmospheric pressure and temperature at all times. Will the egg cool faster or slower when the spacecraft is in space instead of on the ground? Explain.
Chapter 9: Problem 3
Consider a hot boiled egg in a spacecraft that is filled with air at atmospheric pressure and temperature at all times. Will the egg cool faster or slower when the spacecraft is in space instead of on the ground? Explain.
All the tools & learning materials you need for study success - in one app.
Get started for freeConsider an \(L \times L\) horizontal plate that is placed in quiescent air with the hot surface facing up. If the film temperature is \(20^{\circ} \mathrm{C}\) and the average Nusselt number in natural convection is of the form \(\mathrm{Nu}=C \mathrm{Ra}_{L}^{n}\), show that the average heat transfer coefficient can be expressed as $$ \begin{array}{ll} h=1.95(\Delta T / L)^{1 / 4} & 10^{4}<\mathrm{Ra}_{L}<10^{7} \\ h=1.79 \Delta T^{1 / 3} & 10^{7}<\mathrm{Ra}_{L}<10^{11} \end{array} $$
Consider a 1.2-m-high and 2 -m-wide glass window with a thickness of $6 \mathrm{~mm}\(, thermal conductivity \)k=0.78 \mathrm{~W} / \mathrm{m} \cdot \mathrm{K}\(, and emissivity \)\varepsilon=0.9$. The room and the walls that face the window are maintained at \(25^{\circ} \mathrm{C}\), and the average temperature of the inner surface of the window is measured to be $5^{\circ} \mathrm{C}\(. If the temperature of the outdoors is \)-5^{\circ} \mathrm{C}$, determine \((a)\) the convection heat transfer coefficient on the inner surface of the window, \((b)\) the rate of total heat transfer through the window, and (c) the combined natural convection and radiation heat transfer coefficient on the outer surface of the window. Is it reasonable to neglect the thermal resistance of the glass in this case?
A spherical tank \((k=15 \mathrm{~W} / \mathrm{m} \cdot \mathrm{K})\) with an inner diameter of \(3 \mathrm{~m}\) and a wall thickness of \(10 \mathrm{~mm}\) is used for storing hot liquid. The hot liquid inside the tank causes the inner surface temperature to be as high as \(100^{\circ} \mathrm{C}\). To prevent thermal burns to the people working near the tank, the tank is covered with a \(7-\mathrm{cm}\)-thick layer of insulation $(k=0.15 \mathrm{~W} / \mathrm{m} \cdot \mathrm{K})$, and the outer surface is painted to give an emissivity of \(0.35\). The tank is located in surroundings with air at $16^{\circ} \mathrm{C}$. Determine whether or not the insulation layer is sufficient to keep the outer surface temperature below \(45^{\circ} \mathrm{C}\) to prevent thermal burn hazards. Discuss ways to further decrease the outer surface temperature. Evaluate the air properties at \(30^{\circ} \mathrm{C}\) and $1 \mathrm{~atm}$ pressure. Is this a good assumption?
Consider a house in Atlanta, Georgia, that is maintained at $22^{\circ} \mathrm{C}\( and has a total of \)14 \mathrm{~m}^{2}$ of window area. The windows are double-door-type with wood frames and metal spacers. The glazing consists of two layers of glass with \(12.7\) \(\mathrm{mm}\) of airspace with one of the inner surfaces coated with reflective film. The average winter temperature of Atlanta is \(11.3^{\circ} \mathrm{C}\). Determine the average rate of heat loss through the windows in winter. Answer: \(319 \mathrm{~W}\)
A 0.1-W small cylindrical resistor mounted on a lower part of a vertical circuit board is \(0.3\) in long and has a diameter of \(0.2 \mathrm{in}\). The view of the resistor is largely blocked by another circuit board facing it, and the heat transfer through the connecting wires is negligible. The air is free to flow through the large parallel flow passages between the boards as a result of natural convection currents. If the air temperature near the resistor is \(120^{\circ} \mathrm{F}\), determine the approximate surface temperature of the resistor. Evaluate air properties at a film temperature of \(170^{\circ} \mathrm{F}\) and \(1 \mathrm{~atm}\) pressure. Is this a good assumption? Answer: \(211^{\circ} \mathrm{F}\)
What do you think about this solution?
We value your feedback to improve our textbook solutions.