Chapter 9: Problem 2
In which mode of heat transfer is the convection heat transfer coefficient usually higher, natural convection or forced convection? Why?
Chapter 9: Problem 2
In which mode of heat transfer is the convection heat transfer coefficient usually higher, natural convection or forced convection? Why?
All the tools & learning materials you need for study success - in one app.
Get started for freeIn an ordinary double-pane window, about half of the heat transfer is by radiation. Describe a practical way of reducing the radiation component of heat transfer.
A horizontal \(1.5\)-m-wide, \(4.5\)-m-long double-pane window consists of two sheets of glass separated by a \(3.5-\mathrm{cm}\) gap filled with water. If the glass surface temperatures at the bottom and the top are measured to be \(60^{\circ} \mathrm{C}\) and \(40^{\circ} \mathrm{C}\), respectively, the rate of heat transfer through the window is (a) \(27.6 \mathrm{~kW}\) (b) \(39.4 \mathrm{~kW}\) (c) \(59.6 \mathrm{~kW}\) (d) \(66.4 \mathrm{~kW}\) (e) \(75.5 \mathrm{~kW}\) (For water, use $k=0.644 \mathrm{~W} / \mathrm{m} \cdot \mathrm{K}, \quad \operatorname{Pr}=3.55\(, \)\nu=0.554 \times 10^{-6} \mathrm{~m}^{2} / \mathrm{s}, \beta=0.451 \times 10^{-3} \mathrm{~K}^{-1}$. Also, the applicable correlation is \(\mathrm{Nu}=0.069 \mathrm{Ra}^{1 / 3} \mathrm{Pr}^{0.074}\).)
A 0.1-W small cylindrical resistor mounted on a lower part of a vertical circuit board is \(0.3\) in long and has a diameter of \(0.2 \mathrm{in}\). The view of the resistor is largely blocked by another circuit board facing it, and the heat transfer through the connecting wires is negligible. The air is free to flow through the large parallel flow passages between the boards as a result of natural convection currents. If the air temperature near the resistor is \(120^{\circ} \mathrm{F}\), determine the approximate surface temperature of the resistor. Evaluate air properties at a film temperature of \(170^{\circ} \mathrm{F}\) and \(1 \mathrm{~atm}\) pressure. Is this a good assumption? Answer: \(211^{\circ} \mathrm{F}\)
Consider a hot, boiled egg in a spacecraft that is filled with air at atmospheric pressure and temperature at all times. Disregarding any radiation effect, will the egg cool faster or slower when the spacecraft is in space instead of on the ground? (a) faster (b) no difference (c) slower (d) insufficient information
Consider a \(3-\mathrm{m}\)-high rectangular enclosure consisting of two surfaces separated by a \(0.1-\mathrm{m}\) air gap at \(1 \mathrm{~atm}\). If the surface temperatures across the air gap are \(30^{\circ} \mathrm{C}\) and \(-10^{\circ} \mathrm{C}\), determine the ratio of the heat transfer rate for the horizontal orientation (with hotter surface at the bottom) to that for vertical orientation.
What do you think about this solution?
We value your feedback to improve our textbook solutions.