Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

In which mode of heat transfer is the convection heat transfer coefficient usually higher, natural convection or forced convection? Why?

Short Answer

Expert verified
Answer: Forced convection generally has a higher convection heat transfer coefficient compared to natural convection.

Step by step solution

01

Define natural and forced convection

Natural convection occurs when fluid motion is induced by temperature differences in a medium, while forced convection refers to fluid motion that is primarily induced by an external force, such as a pump or fan. In simple terms, natural convection relies on the natural movement of fluid due to temperature variations, whereas forced convection is driven by external forces.
02

Explain convection heat transfer coefficient

The convection heat transfer coefficient (h) is a measure of a fluid's ability to transfer thermal energy across a fluid-solid boundary. Higher values of h indicate more efficient heat transfer between the fluid and the solid surface. The coefficient depends on several factors, including fluid velocity, temperature difference, and the physical properties of the fluid.
03

Compare natural and forced convection in terms of convection heat transfer coefficient

In general, the convection heat transfer coefficient is higher in forced convection compared to natural convection. The reason for this is that forced convection relies on external forces to generate more fluid motion, thereby increasing fluid velocity. The increased fluid velocity results in the higher value of h in forced convection compared to natural convection. Moreover, forced convection allows to control the fluid motion, which can be optimized for better heat transfer depending on the application.
04

Conclusion

Forced convection typically has a higher convection heat transfer coefficient compared to natural convection, due to the increased and controlled fluid motion induced by external forces, which results in more efficient heat transfer between the fluid and the solid surface.

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

In an ordinary double-pane window, about half of the heat transfer is by radiation. Describe a practical way of reducing the radiation component of heat transfer.

A horizontal \(1.5\)-m-wide, \(4.5\)-m-long double-pane window consists of two sheets of glass separated by a \(3.5-\mathrm{cm}\) gap filled with water. If the glass surface temperatures at the bottom and the top are measured to be \(60^{\circ} \mathrm{C}\) and \(40^{\circ} \mathrm{C}\), respectively, the rate of heat transfer through the window is (a) \(27.6 \mathrm{~kW}\) (b) \(39.4 \mathrm{~kW}\) (c) \(59.6 \mathrm{~kW}\) (d) \(66.4 \mathrm{~kW}\) (e) \(75.5 \mathrm{~kW}\) (For water, use $k=0.644 \mathrm{~W} / \mathrm{m} \cdot \mathrm{K}, \quad \operatorname{Pr}=3.55\(, \)\nu=0.554 \times 10^{-6} \mathrm{~m}^{2} / \mathrm{s}, \beta=0.451 \times 10^{-3} \mathrm{~K}^{-1}$. Also, the applicable correlation is \(\mathrm{Nu}=0.069 \mathrm{Ra}^{1 / 3} \mathrm{Pr}^{0.074}\).)

A 0.1-W small cylindrical resistor mounted on a lower part of a vertical circuit board is \(0.3\) in long and has a diameter of \(0.2 \mathrm{in}\). The view of the resistor is largely blocked by another circuit board facing it, and the heat transfer through the connecting wires is negligible. The air is free to flow through the large parallel flow passages between the boards as a result of natural convection currents. If the air temperature near the resistor is \(120^{\circ} \mathrm{F}\), determine the approximate surface temperature of the resistor. Evaluate air properties at a film temperature of \(170^{\circ} \mathrm{F}\) and \(1 \mathrm{~atm}\) pressure. Is this a good assumption? Answer: \(211^{\circ} \mathrm{F}\)

Consider a hot, boiled egg in a spacecraft that is filled with air at atmospheric pressure and temperature at all times. Disregarding any radiation effect, will the egg cool faster or slower when the spacecraft is in space instead of on the ground? (a) faster (b) no difference (c) slower (d) insufficient information

Consider a \(3-\mathrm{m}\)-high rectangular enclosure consisting of two surfaces separated by a \(0.1-\mathrm{m}\) air gap at \(1 \mathrm{~atm}\). If the surface temperatures across the air gap are \(30^{\circ} \mathrm{C}\) and \(-10^{\circ} \mathrm{C}\), determine the ratio of the heat transfer rate for the horizontal orientation (with hotter surface at the bottom) to that for vertical orientation.

See all solutions

Recommended explanations on Physics Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free