Chapter 9: Problem 170
Two concentric cylinders of diameters \(D_{i}=30 \mathrm{~cm}\) and $D_{o}=40 \mathrm{~cm}\( and length \)L=5 \mathrm{~m}$ are separated by air at 1 atm pressure. Heat is generated within the inner cylinder uniformly at a rate of \(1100 \mathrm{~W} / \mathrm{m}^{3}\), and the inner surface temperature of the outer cylinder is \(300 \mathrm{~K}\). The steady-state outer surface temperature of the inner cylinder is (a) \(402 \mathrm{~K}\) (b) \(415 \mathrm{~K}\) (c) \(429 \mathrm{~K}\) (d) \(442 \mathrm{~K}\) (e) \(456 \mathrm{~K}\) (For air, use $k=0.03095 \mathrm{~W} / \mathrm{m} \cdot \mathrm{K}, \quad \operatorname{Pr}=0.7111\(, \)\left.\nu=2.306 \times 10^{-5} \mathrm{~m}^{2} / \mathrm{s}\right)$