Chapter 9: Problem 16
Consider laminar natural convection from a vertical hot plate. Will the heat flux be higher at the top or at the bottom of the plate? Why?
Chapter 9: Problem 16
Consider laminar natural convection from a vertical hot plate. Will the heat flux be higher at the top or at the bottom of the plate? Why?
All the tools & learning materials you need for study success - in one app.
Get started for freeA 0.6-m \(\times 0.6-\mathrm{m}\) horizontal ASTM A240 410S stainless steel plate has its upper surface subjected to convection with cold, quiescent air. The minimum temperature suitable for the stainless steel plate is $-30^{\circ} \mathrm{C}$ (ASME Code for Process Piping, ASME B31.3-2014, Table \(\mathrm{A}-1 \mathrm{M}\) ). If heat is added to the plate at a rate of $70 \mathrm{~W}$, determine the lowest temperature that the air can reach without causing the surface temperature of the plate to cool below the minimum suitable temperature. Evaluate the properties of air at $-50^{\circ} \mathrm{C}$. Is this an appropriate temperature at which to evaluate the air properties?
A vertical 4-ft-high and 6-ft-wide double-pane window consists of two sheets of glass separated by a 1 -in air gap at atmospheric pressure. If the glass surface temperatures across the air gap are measured to be $65^{\circ} \mathrm{F}\( and \)40^{\circ} \mathrm{F}$, determine the rate of heat transfer through the window by \((a)\) natural convection and (b) radiation. Also, determine the \(R\)-value of insulation of this window such that multiplying the inverse of the \(R\)-value by the surface area and the temperature difference gives the total rate of heat transfer through the window. The effective emissivity for use in radiation calculations between two large parallel glass plates can be taken to be \(0.82\).
Consider a flat-plate solar collector placed horizontally on the flat roof of a house. The collector is \(1.5 \mathrm{~m}\) wide and \(4.5 \mathrm{~m}\) long, and the average temperature of the exposed surface of the collector is \(42^{\circ} \mathrm{C}\). Determine the rate of heat loss from the collector by natural convection during a calm day when the ambient air temperature is \(8^{\circ} \mathrm{C}\). Also, determine the heat loss by radiation by taking the emissivity of the collector surface to be \(0.85\) and the effective sky temperature to be \(-15^{\circ} \mathrm{C}\). Answers: $1314 \mathrm{~W}, 1762 \mathrm{~W}$
A hot object suspended by a string is to be cooled by natural convection in fluids whose volume changes differently with temperature at constant pressure. In which fluid will the rate of cooling be lowest? With increasing temperature, a fluid whose volume (a) increases a lot (b) increases slightly (c) does not change (d) decreases slightly (e) decreases a lot
Consider an industrial furnace that resembles a 13-ft-long horizontal cylindrical enclosure \(8 \mathrm{ft}\) in diameter whose end surfaces are well insulated. The furnace burns natural gas at a rate of 48 therms/h. The combustion efficiency of the furnace is 82 percent (i.e., 18 percent of the chemical energy of the fuel is lost through the flue gases as a result of incomplete combustion and the flue gases leaving the furnace at high temperature). If the heat loss from the outer surfaces of the furnace by natural convection and radiation is not to exceed 1 percent of the heat generated inside, determine the highest allowable surface temperature of the furnace. Assume the air and wall surface temperature of the room to be \(75^{\circ} \mathrm{F}\), and take the emissivity of the outer surface of the furnace to be \(0.85\).
What do you think about this solution?
We value your feedback to improve our textbook solutions.