Chapter 9: Problem 155
Consider a \(1.2\)-m-high and 2-m-wide doublepane window consisting of two \(3-\mathrm{mm}\)-thick layers of glass $(k=0.78 \mathrm{~W} / \mathrm{m} \cdot \mathrm{K})\( separated by a \)2.5$-cm-wide airspace. Determine the steady rate of heat transfer through this window and the temperature of its inner surface for a day during which the room is maintained at \(20^{\circ} \mathrm{C}\) while the temperature of the outdoors is \(0^{\circ} \mathrm{C}\). Take the heat transfer coefficients on the inner and outer surfaces of the window to be \(h_{1}=10 \mathrm{~W} / \mathrm{m}^{2} \cdot \mathrm{K}\) and $h_{2}=25 \mathrm{~W} / \mathrm{m}^{2} \cdot \mathrm{K}$, and disregard any heat transfer by radiation. Evaluate air properties at a film temperature of \(10^{\circ} \mathrm{C}\) and \(1 \mathrm{~atm}\) pressure. Is this a good assumption?