Chapter 9: Problem 15
Will a hot horizontal plate whose back side is insulated cool faster or slower when its hot surface is facing down instead of up?
Chapter 9: Problem 15
Will a hot horizontal plate whose back side is insulated cool faster or slower when its hot surface is facing down instead of up?
All the tools & learning materials you need for study success - in one app.
Get started for freeDetermine the \(U\)-factor for the center-of-glass section of a double-pane window with a \(13-\mathrm{mm}\) airspace for winter design conditions. The glazings are made of clear glass having an emissivity of \(0.84\). Take the average airspace temperature at design conditions to be $10^{\circ} \mathrm{C}$ and the temperature difference across the airspace to be \(15^{\circ} \mathrm{C}\).
A group of 25 power transistors, dissipating \(1.5 \mathrm{~W}\) each, are to be cooled by attaching them to a black-anodized square aluminum plate and mounting the plate on the wall of a room at \(30^{\circ} \mathrm{C}\). The emissivity of the transistor and the plate surfaces is 0.9. Assuming the heat transfer from the back side of the plate to be negligible and the temperature of the surrounding surfaces to be the same as the air temperature of the room, determine the size of the plate if the average surface temperature of the plate is not to exceed \(50^{\circ} \mathrm{C}\). Answer: $43 \mathrm{~cm} \times 43 \mathrm{~cm}$
Consider a hot, boiled egg in a spacecraft that is filled with air at atmospheric pressure and temperature at all times. Disregarding any radiation effect, will the egg cool faster or slower when the spacecraft is in space instead of on the ground? (a) faster (b) no difference (c) slower (d) insufficient information
A \(0.6-\mathrm{m} \times 0.6-\mathrm{m}\) horizontal ASTM A203 B steel plate has its lower surface subjected to convection with cold, quiescent hydrogen gas at \(-70^{\circ} \mathrm{C}\). The minimum temperature suitable for the steel plate is \(-30^{\circ} \mathrm{C}\) (ASME Code for Process Piping, ASME B31.3-2014, Table A-1M). The lower plate surface has an emissivity of \(0.3\), and thermal radiation exchange occurs between the lower plate surface and the surroundings at \(-70^{\circ} \mathrm{C}\). Determine the heat addition rate necessary for keeping the lower plate surface temperature from dropping below the minimum suitable temperature.
A vertical double-pane window consists of two sheets of glass separated by a \(1.2-\mathrm{cm}\) air gap at atmospheric pressure. The glass surface temperatures across the air gap are measured to be \(278 \mathrm{~K}\) and $288 \mathrm{~K}$. If it is estimated that the heat transfer by convection through the enclosure is \(1.5\) times that by pure conduction and that the rate of heat transfer by radiation through the enclosure is about the same magnitude as the convection, the effective emissivity of the two glass surfaces is (a) \(0.35\) (b) \(0.48\) (c) \(0.59\) (d) \(0.84\) (e) \(0.72\)
What do you think about this solution?
We value your feedback to improve our textbook solutions.