Chapter 9: Problem 124
Consider a double-pane window whose airspace is flashed and filled with argon gas. How will replacing the air in the gap with argon affect \((a)\) convection and \((b)\) radiation heat transfer through the window?
Chapter 9: Problem 124
Consider a double-pane window whose airspace is flashed and filled with argon gas. How will replacing the air in the gap with argon affect \((a)\) convection and \((b)\) radiation heat transfer through the window?
All the tools & learning materials you need for study success - in one app.
Get started for freeIn an ordinary double-pane window, about half of the heat transfer is by radiation. Describe a practical way of reducing the radiation component of heat transfer.
Skylights or "roof windows" are commonly used in homes and manufacturing facilities since they let natural light in during daytime and thus reduce the lighting costs. However, they offer little resistance to heat transfer, and large amounts of energy are lost through them in winter unless they are equipped with a motorized insulating cover that can be used in cold weather and at nights to reduce heat losses. Consider a \(1-\mathrm{m}\)-wide and \(2.5\)-m-long horizontal skylight on the roof of a house that is kept at \(20^{\circ} \mathrm{C}\). The glazing of the skylight is made of a single layer of \(0.5-\mathrm{cm}\)-thick glass $(k=0.78 \mathrm{~W} / \mathrm{m} \cdot \mathrm{K}\( and \)\varepsilon=0.9$ ). Determine the rate of heat loss through the skylight when the air temperature outside is \(-10^{\circ} \mathrm{C}\) and the effective sky temperature is \(-30^{\circ} \mathrm{C}\). Compare your result with the rate of heat loss through an equivalent surface area of the roof that has a common \(R-5.34\) construction in SI units (i.e., a thickness-to- effective-thermal-conductivity ratio of $5.34 \mathrm{~m}^{2} . \mathrm{K} / \mathrm{W}\( ). Evaluate air properties at a film temperature of \)-7^{\circ} \mathrm{C}\( and \)1 \mathrm{~atm}$ pressure. Is this a good assumption?
Show that the thermal resistance of a rectangular enclosure can be expressed as \(R=L_{c} /(A k \mathrm{Nu})\), where \(k\) is the thermal conductivity of the fluid in the enclosure.
Consider a \(3-\mathrm{m}\)-high rectangular enclosure consisting of two surfaces separated by a \(0.1-\mathrm{m}\) air gap at \(1 \mathrm{~atm}\). If the surface temperatures across the air gap are \(30^{\circ} \mathrm{C}\) and \(-10^{\circ} \mathrm{C}\), determine the ratio of the heat transfer rate for the horizontal orientation (with hotter surface at the bottom) to that for vertical orientation.
Hot water is flowing at an average velocity of \(4 \mathrm{ft} / \mathrm{s}\) through a cast iron pipe $\left(k=30 \mathrm{Btu} / \mathrm{h} \cdot \mathrm{ft} \cdot{ }^{\circ} \mathrm{F}\right)$ whose inner and outer diameters are \(1.0\) in and \(1.2\) in, respectively. The pipe passes through a 50 -ft-long section of a basement whose temperature is $60^{\circ} \mathrm{F}\(. The emissivity of the outer surface of the pipe is \)0.5$, and the walls of the basement are also at about \(60^{\circ} \mathrm{F}\). If the inlet temperature of the water is \(150^{\circ} \mathrm{F}\) and the heat transfer coefficient on the inner surface of the pipe is $30 \mathrm{Btu} / \mathrm{h} \cdot \mathrm{ft}^{2} \cdot{ }^{\circ} \mathrm{F}$, determine the temperature drop of water as it passes through the basement. Evaluate air properties at a film temperature of \(105^{\circ} \mathrm{C}\) and \(1 \mathrm{~atm}\) pressure. Is this a good assumption?
What do you think about this solution?
We value your feedback to improve our textbook solutions.