Chapter 8: Problem 7
Consider laminar flow in a circular tube. Will the friction factor be higher near the inlet of the tube or near the exit? Why? What would your response be if the flow were turbulent?
Chapter 8: Problem 7
Consider laminar flow in a circular tube. Will the friction factor be higher near the inlet of the tube or near the exit? Why? What would your response be if the flow were turbulent?
All the tools & learning materials you need for study success - in one app.
Get started for freeWater at $10^{\circ} \mathrm{C}\left(\rho=999.7 \mathrm{~kg} / \mathrm{m}^{3}\right.\( and \)\mu=1.307 \times\( \)10^{-3} \mathrm{~kg} / \mathrm{m} \cdot \mathrm{s}\( ) is flowing in a \)0.20-\mathrm{cm}$-diameter, 15 -m-long pipe steadily at an average velocity of $1.2 \mathrm{~m} / \mathrm{s}\(. Determine \)(a)\( the pressure drop and \)(b)$ the pumping power requirement to overcome this pressure drop. Assume flow is fully developed. Is this a good assumption? Answers: (a) \(188 \mathrm{kPa}\), (b) $0.71 \mathrm{~W}$
Hot water at \(90^{\circ} \mathrm{C}\) enters a \(15-\mathrm{m}\) section of a cast iron pipe \((k=52 \mathrm{~W} / \mathrm{m} \cdot \mathrm{K})\) whose inner and outer diameters are 4 and \(4.6 \mathrm{~cm}\), respectively, at an average velocity of \(1.2 \mathrm{~m} / \mathrm{s}\). The outer surface of the pipe, whose emissivity is \(0.7\), is exposed to the cold air at $10^{\circ} \mathrm{C}\( in a basement, with a convection heat transfer coefficient of \)12 \mathrm{~W} / \mathrm{m}^{2} \cdot \mathrm{K}$. Taking the walls of the basement to be at \(10^{\circ} \mathrm{C}\) also, determine \((a)\) the rate of heat loss from the water and (b) the temperature at which the water leaves the basement.
In a food processing plant, hot liquid water is being transported in a pipe \((k=15 \mathrm{~W} / \mathrm{m} \cdot \mathrm{K}\), $D_{i}=2.5 \mathrm{~cm}, D_{o}=3 \mathrm{~cm}\(, and \)L=10 \mathrm{~m}$.) The hot water flowing with a mass flow rate of \(0.15 \mathrm{~kg} / \mathrm{s}\) enters the pipe at \(100^{\circ} \mathrm{C}\) and exits at \(60^{\circ} \mathrm{C}\). The plant supervisor thinks that since the hot water exits the pipe at $60^{\circ} \mathrm{C}$, the pipe's outer surface temperature should be safe from thermal burn hazards. In order to prevent thermal burn upon accidental contact with skin tissue for individuals working in the vicinity of the pipe, the pipe's outer surface temperature should be kept below \(45^{\circ} \mathrm{C}\). Determine whether or not there is a risk of thermal burn on the pipe's outer surface. Assume the pipe outer surface temperature remains constant.
In a thermal system, water enters a \(25-\mathrm{mm}\)-diameter and \(23-\mathrm{m}\)-long circular tube with a mass flow rate of $0.1 \mathrm{~kg} / \mathrm{s}\( at \)25^{\circ} \mathrm{C}$. The heat transfer from the tube surface to the water can be expressed in terms of heat flux as \(\dot{q}_{s}(x)=a x\). The coefficient \(a\) is $400 \mathrm{~W} / \mathrm{m}^{3}\(, and the axial distance from the tube inlet is \)x$ measured in meters. Determine \((a)\) an expression for the mean temperature \(T_{m}(x)\) of the water, \((b)\) the outlet mean temperature of the water, and (c) the value of a uniform heat flux \(\dot{q}_{s}\) on the tube surface that would result in the same outlet mean temperature calculated in part (b). Evaluate water properties at \(35^{\circ} \mathrm{C}\).
The exhaust gases of an automotive engine leave the combustion chamber and enter an 8 -ft-long and 3.5-in-diameter thin-walled steel exhaust pipe at \(800^{\circ} \mathrm{F}\) and \(15.5 \mathrm{psia}\) at a rate of $0.05 \mathrm{lbm} / \mathrm{s}$. The surrounding ambient air is at a temperature of \(80^{\circ} \mathrm{F}\), and the heat transfer coefficient on the outer surface of the exhaust pipe is $3 \mathrm{Btu} / \mathrm{h} \cdot \mathrm{ft}^{2},{ }^{\circ} \mathrm{F}$. Assuming the exhaust gases to have the properties of air, determine \((a)\) the velocity of the exhaust gases at the inlet of the exhaust pipe and \((b)\) the temperature at which the exhaust gases will leave the pipe and enter the air.
What do you think about this solution?
We value your feedback to improve our textbook solutions.