Chapter 8: Problem 61
In a thermal system, water enters a \(25-\mathrm{mm}\)-diameter and \(23-\mathrm{m}\)-long circular tube with a mass flow rate of $0.1 \mathrm{~kg} / \mathrm{s}\( at \)25^{\circ} \mathrm{C}$. The heat transfer from the tube surface to the water can be expressed in terms of heat flux as \(\dot{q}_{s}(x)=a x\). The coefficient \(a\) is $400 \mathrm{~W} / \mathrm{m}^{3}\(, and the axial distance from the tube inlet is \)x$ measured in meters. Determine \((a)\) an expression for the mean temperature \(T_{m}(x)\) of the water, \((b)\) the outlet mean temperature of the water, and (c) the value of a uniform heat flux \(\dot{q}_{s}\) on the tube surface that would result in the same outlet mean temperature calculated in part (b). Evaluate water properties at \(35^{\circ} \mathrm{C}\).