Chapter 8: Problem 6
In the fully developed region of flow in a circular tube, will the velocity profile change in the flow direction? How about the temperature profile?
Chapter 8: Problem 6
In the fully developed region of flow in a circular tube, will the velocity profile change in the flow direction? How about the temperature profile?
All the tools & learning materials you need for study success - in one app.
Get started for freeConsider laminar forced convection in a circular tube. Will the heat flux be higher near the inlet of the tube or near the exit? Why?
Electronic boxes such as computers are commonly cooled by a fan. Write an essay on forced air cooling of electronic boxes and on the selection of the fan for electronic devices.
To cool a storehouse in the summer without using a conventional air- conditioning system, the owner decided to hire an engineer to design an alternative system that would make use of the water in the nearby lake. The engineer decided to flow air through a thin, smooth, 10 -cm-diameter copper tube that is submerged in the lake. The water in the lake is typically at a constant temperature of \(15^{\circ} \mathrm{C}\) and a convection heat transfer coefficient of \(1000 \mathrm{~W} / \mathrm{m}^{2}\). \(\mathrm{K}\). If air (1 atm) enters the copper tube at a mean temperature of \(30^{\circ} \mathrm{C}\) with an average velocity of \(2.5 \mathrm{~m} / \mathrm{s}\), determine the necessary copper tube length so that the outlet mean temperature of the air is \(20^{\circ} \mathrm{C}\).
Air is flowing through a smooth, thin-walled, 4-in-diameter copper tube that is submerged in water. The water maintains a constant temperature of \(60^{\circ} \mathrm{F}\) and a convection heat transfer coefficient of $176 \mathrm{Btu} / \mathrm{h} \cdot \mathrm{ft}^{2} \cdot \mathrm{R}\(. If air \)(1 \mathrm{~atm})\( enters the copper tube at a mean temperature of \)90^{\circ} \mathrm{F}\( with an average velocity of \)8 \mathrm{ft} / \mathrm{s}$, determine the necessary copper tube length so that the outlet mean temperature of the air is \(70^{\circ} \mathrm{F}\).
Air enters a 7-cm-diameter and 4-m-long tube at \(65^{\circ} \mathrm{C}\) and leaves at \(15^{\circ} \mathrm{C}\). The tube is observed to be nearly isothermal at \(5^{\circ} \mathrm{C}\). If the average convection heat transfer coefficient is \(20 \mathrm{~W} / \mathrm{m}^{2},{ }^{\circ} \mathrm{C}\), the rate of heat transfer from the air is (a) \(491 \mathrm{~W}\) (b) \(616 \mathrm{~W}\) (c) \(810 \mathrm{~W}\) (d) \(907 \mathrm{~W}\) (e) \(975 \mathrm{~W}\)
What do you think about this solution?
We value your feedback to improve our textbook solutions.