A liquid hydrocarbon enters a \(2.5\)-cm-diameter tube that is \(5.0 \mathrm{~m}\)
long. The liquid inlet temperature is \(20^{\circ} \mathrm{C}\) and the tube
wall temperature is \(60^{\circ} \mathrm{C}\). Average liquid properties are
$c_{p}=2.0 \mathrm{~kJ} / \mathrm{kg} \cdot \mathrm{K}, \mu=10 \mathrm{mPa}
\cdot \mathrm{s}\(, and \)\rho=900 \mathrm{~kg} / \mathrm{m}^{3}$. At a flow
rate of \(1200 \mathrm{~kg} / \mathrm{h}\), the liquid outlet temperature is
measured to be \(30^{\circ} \mathrm{C}\). Estimate the liquid outlet temperature
when the flow rate is reduced to \(400 \mathrm{~kg} / \mathrm{h}\). Hint: For
heat transfer in tubes, \(\mathrm{Nu} \propto \mathrm{Re}^{1 / 3}\) in laminar
flow and \(\mathrm{Nu} \propto \mathrm{Re}^{4 / 5}\) in turbulent flow.