Chapter 8: Problem 36
How is the friction factor for flow in a tube related to the pressure drop? How is the pressure drop related to the pumping power requirement for a given mass flow rate?
Chapter 8: Problem 36
How is the friction factor for flow in a tube related to the pressure drop? How is the pressure drop related to the pumping power requirement for a given mass flow rate?
All the tools & learning materials you need for study success - in one app.
Get started for freeWater at \(1500 \mathrm{~kg} / \mathrm{h}\) and \(10^{\circ} \mathrm{C}\) enters a \(10-\mathrm{mm}\)-diameter smooth tube whose wall temperature is maintained at \(49^{\circ} \mathrm{C}\). Calculate \((a)\) the tube length necessary to heat the water to \(40^{\circ} \mathrm{C}\), and \((b)\) the water outlet temperature if the tube length is doubled. Assume average water properties to be the same as in \((a)\).
In fully developed laminar flow in a circular pipe, the velocity at \(R / 2\) (midway between the wall surface and the centerline) is measured to be $6 \mathrm{~m} / \mathrm{s}$. Determine the velocity at the center of the pipe. Answer: \(8 \mathrm{~m} / \mathrm{s}\)
Glycerin is being heated by flowing between two very thin parallel 1 -m-wide and \(10-\mathrm{m}\)-long plates with \(12.5\)-mm spacing. The glycerin enters the parallel plates with a temperature \(20^{\circ} \mathrm{C}\) and a mass flow rate of \(0.7 \mathrm{~kg} / \mathrm{s}\). The outer surface of the parallel plates is subjected to hydrogen gas (an ideal gas at \(1 \mathrm{~atm}\) ) flow width-wise in parallel over the upper and lower surfaces of the two plates. The free-stream hydrogen gas has a velocity of \(3 \mathrm{~m} / \mathrm{s}\) and a temperature of \(150^{\circ} \mathrm{C}\). Determine the outlet mean temperature of the glycerin, the surface temperature of the parallel plates, and the total rate of heat transfer. Evaluate the properties for glycerin at \(30^{\circ} \mathrm{C}\) and the properties of \(\mathrm{H}_{2}\) gas at \(100^{\circ} \mathrm{C}\). Are these good assumptions?
Internal force flows are said to be fully developed once the _____ at a cross section no longer changes in the direction of flow. (a) temperature distribution (b) entropy distribution (c) velocity distribution (d) pressure distribution (e) none of the above
The velocity profile in fully developed laminar flow in a circular pipe of inner radius \(R=10 \mathrm{~cm}\), in \(\mathrm{m} / \mathrm{s}\), is given by \(u(r)=4\left(1-r^{2} / R^{2}\right)\). Determine the mean and maximum velocities in the pipe, and determine the volume flow rate.
What do you think about this solution?
We value your feedback to improve our textbook solutions.