Chapter 8: Problem 162
Electronic boxes such as computers are commonly cooled by a fan. Write an essay on forced air cooling of electronic boxes and on the selection of the fan for electronic devices.
Chapter 8: Problem 162
Electronic boxes such as computers are commonly cooled by a fan. Write an essay on forced air cooling of electronic boxes and on the selection of the fan for electronic devices.
All the tools & learning materials you need for study success - in one app.
Get started for freeIn fully developed laminar flow in a circular pipe, the velocity at \(R / 2\) (midway between the wall surface and the centerline) is measured to be $6 \mathrm{~m} / \mathrm{s}$. Determine the velocity at the center of the pipe. Answer: \(8 \mathrm{~m} / \mathrm{s}\)
The velocity profile in fully developed laminar flow of water at $40^{\circ} \mathrm{F}\( in a 140 -ft-long horizontal circular pipe, in \)\mathrm{ft} / \mathrm{s}\(, is given by \)u(r)=0.8\left(1-625 r^{2}\right)\( where \)r$ is the radial distance from the centerline of the pipe in \(\mathrm{ft}\). Determine (a) the volume flow rate of water through the pipe, \((b)\) the pressure drop across the pipe, and (c) the useful pumping power required to overcome this pressure drop.
Inside a condenser, there is a bank of seven copper tubes with cooling water flowing in them. Steam condenses at a rate of \(0.6 \mathrm{~kg} / \mathrm{s}\) on the outer surfaces of the tubes that are at a constant temperature of \(68^{\circ} \mathrm{C}\). Each copper tube is \(5 \mathrm{~m}\) long and has an inner diameter of \(25 \mathrm{~mm}\). Cooling water enters each tube at \(5^{\circ} \mathrm{C}\) and exits at \(60^{\circ} \mathrm{C}\). Determine the average heat transfer coefficient of the cooling water flowing inside each tube and the cooling water mean velocity needed to achieve the indicated heat transfer rate in the condenser.
Water at \(15^{\circ} \mathrm{C}\) is flowing through a \(5-\mathrm{cm}\)-diameter smooth tube with a length of \(200 \mathrm{~m}\). Determine the Darcy friction factor and pressure loss associated with the tube for (a) mass flow rate of \(0.02 \mathrm{~kg} / \mathrm{s}\) and (b) mass flow rate of $0.5 \mathrm{~kg} / \mathrm{s}$.
Glycerin is being heated by flowing between two parallel 1 -m-wide and 10 -m-long plates with \(12.5-\mathrm{mm}\) spacing. The glycerin enters the parallel plates with a temperature of \(25^{\circ} \mathrm{C}\) and a mass flow rate of \(0.7 \mathrm{~kg} / \mathrm{s}\). The plates have a constant surface temperature of \(40^{\circ} \mathrm{C}\). Determine the outlet mean temperature of the glycerin and the total rate of heat transfer. Evaluate the properties for glycerin at \(30^{\circ} \mathrm{C}\). Is this a good assumption?
What do you think about this solution?
We value your feedback to improve our textbook solutions.